DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-10-18 10:50:54
    • Article ID: 720996

    Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

    • Credit: Elle Starkman / PPPL Office of Communications

      PPPL physicist Weixing Wang

    The swirls created by milk poured into coffee or the shudders that can jolt airplanes in flight are examples of turbulence, the chaotic movement of matter found throughout nature. Turbulence also occurs within tokamaks, doughnut-shaped facilities that house the plasma that fuels fusion reactions. Now, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

    Fusion, the power that drives the sun and stars, is the fusing of light elements in the form of plasma — the hot, charged state of matter composed of free electrons and atomic nuclei, or ions — that generates massive amounts of energy. Scientists are seeking to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

    For fusion to occur in tokamaks, the plasma must be confined by a cage of magnetic fields that shape and control the hot, charged matter. The bootstrap current plays an important role in creating the cage and disturbing it could affect the confinement of the plasma and the production of fusion reactions.

    “It turns out that turbulence may significantly affect the bootstrap current,” said PPPL physicist Weixing Wang, lead author of a paper reporting the results in Nuclear Fusion. “This is a potential effect that needs to be taken fully into account.”

    The simulations show that turbulence can weaken the bootstrap current in relatively high temperature plasma and strengthen the current in plasmas with lower temperatures. In high temperatures, turbulence causes effective particle collisions that interfere with the electron current.

    For large tokamaks like ITER, the multinational fusion facility being built in France to demonstrate the practicality of fusion energy, weakening the self-driven current could decrease the energy gain in discharges with fully non-inductive, or non-pulsed, currents. Such weakening means that more of the overall plasma current would have to be created by external means like radio waves rather than by the self-generated bootstrap current that naturally occurs in tokamaks.

    Though there is no fusion device with an entirely self-driven current in operation, the findings from this computational and theoretical study can be tested and validated by current fusion experiments for non-pulsed steady-state scenarios achievable on tokamaks including the DIII-D National Fusion Facility, a DOE Office of Science user facility operated by General Atomics. More massive supercomputer simulations will be required to answer important questions, such as how much self-driven current may be expected in future burning plasma experiments.

    The research team includes scientists from Seoul National University. Simulations were performed on the Edison computer at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory in Berkeley, California. Support for this research was provided by the DOE’s Office of Science and the SciDAC Tokamak Disruption Simulation project. Support also came from the R&D Program of ITER Burning Plasma Research and Development of the ITER Plasma Exploitation Plan through the National Fusion Research Institute of Korea.

    PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Experiments at Berkeley Lab are casting a new light on Egyptian soil and ancient mummified bone samples that could provide a richer understanding of daily life and environmental conditions thousands of years ago. In a two-monthslong research effort that concluded in late August, two researchers from Cairo University in Egypt brought 32 bone samples and two soil samples to study using X-ray and infrared light-based techniques at the Lab's Advanced Light Source.

    Deep Learning Expands Study of Nuclear Waste Remediation

    Deep Learning Expands Study of Nuclear Waste Remediation

    A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation

    Biofuel producers make significant gains in efficiency, productivity and conservation, Argonne survey shows

    Biofuel producers make significant gains in efficiency, productivity and conservation, Argonne survey shows

    The nation's biofuel producers have made significant gains in both energy efficiency and water conservation in recent years, according to a comprehensive survey conducted by Argonne National Laboratory.

    Machine Learning Enhances Light-Beam Performance at the Advanced Light Source

    Machine Learning Enhances Light-Beam Performance at the Advanced Light Source

    A team of researchers at Berkeley Lab and UC Berkeley has successfully demonstrated how machine-learning tools can improve the stability of light beams' size for science experiments at a synchrotron light source via adjustments that largely cancel out unwanted fluctuations.

    Machine learning analyses help unlock secrets of stable 'supercrystal'

    Machine learning analyses help unlock secrets of stable 'supercrystal'

    By blasting a frustrated mixture of materials with quick pulses of laser light, researchers transformed a superlattice into a supercrystal, a rare, repeating, three-dimensional structural much larger than an ordinary crystal. Using machine learning techniques, they studied the underlying structure of this sample at the nanoscale level before and after applying the laser pulse treatment.

    Argonne collaborates to review current battery recycling processes for electric vehicles

    Argonne collaborates to review current battery recycling processes for electric vehicles

    Nature has published a new review co-authored by Argonne analyst Linda Gaines. The review evaluates the state of EV battery recycling today and what's needed to build a more sustainable future.

    Go With the Flow: Scientists Design New Grid Batteries for Renewable Energy

    Go With the Flow: Scientists Design New Grid Batteries for Renewable Energy

    Scientists at Berkeley Lab have designed an affordable 'flow battery' membrane that could accelerate renewable energy for the electrical grid.

    Tests start at CERN for large-scale prototype of new technology to detect neutrinos

    Tests start at CERN for large-scale prototype of new technology to detect neutrinos

    Scientists working at CERN have started tests of a new neutrino detector prototype, using a very promising technology called "dual phase." If successful, this new technology will be used at a much larger scale for the international Deep Underground Neutrino Experiment, hosted by the U.S Department of Energy's Fermilab.

    New Measurement Yields Smaller Proton Radius

    New Measurement Yields Smaller Proton Radius

    Physicists get closer to solving the proton radius puzzle with unique new measurement of the charge radius of the proton.

    A Game-Changing Test for Prion, Alzheimer's, and Parkinson's Diseases is on the Horizon

    A Game-Changing Test for Prion, Alzheimer's, and Parkinson's Diseases is on the Horizon

    A new test agent can easily and efficiently detect the misfolded protein aggregates that cause devastating neurological diseases in blood samples. The technology could lead to early diagnosis of prion, Alzheimer's, and Parkinson's diseases for the first time.


    • Filters

    • × Clear Filters
    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven's Superconducting Magnet Division will partner with industry to develop and characterize superconducting power cables.

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    Going on its fourth year, DOE's CyberForce Competition(tm) on Nov. 15-16 will give teams of cybersecurity students and professionals the opportunity to compete and refine their skills in real-time at 10 national laboratories across the U.S.

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen's work on how massive objects bend light from distant galaxies is aimed at unraveling some of the greatest mysteries of modern physics: What is dark matter? What is dark energy, and how is it accelerating the expansion of the universe?

    DOE Announces FY 2020 Small Business Innovation Research Funding Opportunity

    The Department of Energy (DOE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs issued its FY 2020 Phase II Release 1 Funding Opportunity Announcement (FOA) with approximately $97 million in available funding.

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    A joint effort by the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago has led to a prestigious R&D 100 Award and is expected to bring an innovation closer to market so it ultimately can be used in many industrial applications.

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    The U.S. Department of Energy announced that it has awarded scientists at its Fermi National Accelerator Laboratory funding to boost research on dark matter, the mysterious substance that makes up an astounding 85% of the matter in the universe.

    Fermilab Scientist Xingchen Xu Receives Prestigious DOE Award to Develop Superconductors

    Fermilab Scientist Xingchen Xu Receives Prestigious DOE Award to Develop Superconductors

    Fermilab scientist Xingchen Xu has received the prestigious $2.5 million Department of Energy Early Career Research Award to fund his five-year mission: advancing two technologies that will improve the performance niobium-tin superconductor by 50% or more, allowing for smaller coils, stronger magnetic fields and lower costs.

    ORNL to take on nine power grid modernization projects as part of DOE award

    ORNL to take on nine power grid modernization projects as part of DOE award

    Oak Ridge National Laboratory researchers will lead two new projects and support seven more to enhance the reliability and resilience of the nation's power grid as part of the U.S. Department of Energy's 2019 Grid Modernization Lab Call.

    Berkeley Lab Innovations Recognized With 3 R&D 100 Awards

    Berkeley Lab Innovations Recognized With 3 R&D 100 Awards

    Cutting-edge technologies from Lawrence Berkeley National Laboratory (Berkeley Lab) to detect radiation, make buildings more energy efficient, and accelerate neuroscience research were honored with R&D 100 Awards by R&D World magazine.

    Argonne and partners take home nine R&D 100 Awards in 2019

    Argonne and partners take home nine R&D 100 Awards in 2019

    Research teams at Argonne National Laboratory have won nine R&D 100 awards, three more are named finalists.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight





    Showing results

    0-4 Of 2215