DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-10-02 16:05:47
    • Article ID: 720074

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    $5.5M from DOE funds new AI collaboration

    • Credit: Andrea Starr | PNNL

      PNNL, Sandia, and Georgia Institute of Technology receive $5.5 million from DOE to establish the Center for ARtificial Intelligence-focused ARchitectures and Algorithms (ARIAA).

    • Credit: Andrea Starr | PNNL

      PNNL researcher, Roberto Gioiosa, to lead the the Center for ARtificial Intelligence-focused ARchitectures and Algorithms (ARIAA).

    Three powerhouses in the realm of artificial intelligence have become partners in a new research center created by the U.S. Department of Energy.

    Scientists from DOE’s Pacific Northwest National Laboratory, DOE’s Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    The new co-design center, known as the Center for ARtificial Intelligence-focused ARchitectures and Algorithms (ARIAA), funded by DOE’s Office of Science, will promote collaboration between scientists at the three organizations as they develop core technologies important for the application of AI to DOE mission priorities, such as cybersecurity and electric grid resilience.

    Today’s announcement reinforces DOE’s commitment to accelerating the research, development, delivery, and adoption of AI and complements an earlier announcement by Secretary of Energy Rick Perry. He had announced the establishment of the DOE Artificial Intelligence and Technology Office (AITO) to coordinate the AI work being done across the DOE enterprise. The development is in line with President Trump’s call for a national strategy to assure AI technologies are developed to positively impact the lives of the American public.

    PNNL senior research scientist Roberto Gioiosa will be the center’s director and will lead the overall vision, strategy, and research direction. Siva Rajamanickam from Sandia and Professor Tushar Krishna from Georgia Tech will serve as deputy directors.

    “Artificial intelligence is revolutionizing our world,” said Gioiosa. “You can see this everywhere from your mobile phone to the development of self-driving cars. AI is also revolutionizing the way we do science and the way we tackle problems important to our nation. The creation of ARIAA is part of the strategy for solving some of the most challenging problems by employing novel artificial intelligence and machine learning techniques.”

    One of the biggest difficulties facing researchers today is a problem of their own making: How to best design future supercomputers so that they can help DOE solve the nation’s most challenging problems in science, engineering, health, and energy. ARIAA is centered around a concept known as “co-design,” which alludes to the need for researchers to weigh and balance the capabilities of hardware and software – how to corral the vastly different types of architectures and algorithms possible to best solve the problems at hand. What types of applications will run best on a given hardware set-up, and conversely, what types of hardware need to be created to best serve newly created software? It’s a balance that Gioiosa knows well: He was part of the team that 15 years ago built IBM Blue Gene, a powerful and efficient supercomputer whose heart is co-design.

    While co-design requires a balance that computer scientists have faced for decades, the surging discipline of AI demands newly focused attention.

    The center will explore how AI and machine learning can support four areas that touch virtually everyone: the power grid, cybersecurity, graph analytics, and computational chemistry. Those disciplines touch upon how new medicines are created, how to keep one’s online identity safe, how to analyze masses of information, and how to keep the electric grid humming despite multiple challenges.

    A focus of the center is to develop algorithms and architectures that can be used and applied in a variety of different systems, both today’s as well as systems to be created in the future.

    Each institution brings to the collaboration a unique strength:

    • PNNL has expertise in power grid simulation, chemistry, and cybersecurity, and robust research in computer architecture and programming models, as well as computing resources, including systems for testing emerging architectures.
    • Sandia has expertise in software simulation of computer systems, machine learning algorithms, graph analytics, and sparse linear algebra, and will provide access to computer facilities and testbed systems to support early access to emerging computing architectures for code development and testing.
    • Georgia Tech has expertise with modeling and developing custom accelerators for machine learning and sparse linear algebra and will provide access to its advanced computing resources.

    “AI promises to yield answers to many problems in a fraction of the time compared to current processes,” said Gioiosa. “But more importantly, AI will allow us to solve problems that today simply cannot be solved because they are too complex. This is the science of the future.”

    About PNNL

    Pacific Northwest National Laboratory draws on signature capabilities in chemistry, earth sciences, and data analytics to advance scientific discovery and create solutions to the nation's toughest challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit PNNL's News Center. Follow us on Facebook,Instagram, LinkedIn and Twitter.

     

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Experiments at Berkeley Lab are casting a new light on Egyptian soil and ancient mummified bone samples that could provide a richer understanding of daily life and environmental conditions thousands of years ago. In a two-monthslong research effort that concluded in late August, two researchers from Cairo University in Egypt brought 32 bone samples and two soil samples to study using X-ray and infrared light-based techniques at the Lab's Advanced Light Source.

    Deep Learning Expands Study of Nuclear Waste Remediation

    Deep Learning Expands Study of Nuclear Waste Remediation

    A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation

    Biofuel producers make significant gains in efficiency, productivity and conservation, Argonne survey shows

    Biofuel producers make significant gains in efficiency, productivity and conservation, Argonne survey shows

    The nation's biofuel producers have made significant gains in both energy efficiency and water conservation in recent years, according to a comprehensive survey conducted by Argonne National Laboratory.

    Machine Learning Enhances Light-Beam Performance at the Advanced Light Source

    Machine Learning Enhances Light-Beam Performance at the Advanced Light Source

    A team of researchers at Berkeley Lab and UC Berkeley has successfully demonstrated how machine-learning tools can improve the stability of light beams' size for science experiments at a synchrotron light source via adjustments that largely cancel out unwanted fluctuations.

    Machine learning analyses help unlock secrets of stable 'supercrystal'

    Machine learning analyses help unlock secrets of stable 'supercrystal'

    By blasting a frustrated mixture of materials with quick pulses of laser light, researchers transformed a superlattice into a supercrystal, a rare, repeating, three-dimensional structural much larger than an ordinary crystal. Using machine learning techniques, they studied the underlying structure of this sample at the nanoscale level before and after applying the laser pulse treatment.

    Argonne collaborates to review current battery recycling processes for electric vehicles

    Argonne collaborates to review current battery recycling processes for electric vehicles

    Nature has published a new review co-authored by Argonne analyst Linda Gaines. The review evaluates the state of EV battery recycling today and what's needed to build a more sustainable future.

    Go With the Flow: Scientists Design New Grid Batteries for Renewable Energy

    Go With the Flow: Scientists Design New Grid Batteries for Renewable Energy

    Scientists at Berkeley Lab have designed an affordable 'flow battery' membrane that could accelerate renewable energy for the electrical grid.

    Tests start at CERN for large-scale prototype of new technology to detect neutrinos

    Tests start at CERN for large-scale prototype of new technology to detect neutrinos

    Scientists working at CERN have started tests of a new neutrino detector prototype, using a very promising technology called "dual phase." If successful, this new technology will be used at a much larger scale for the international Deep Underground Neutrino Experiment, hosted by the U.S Department of Energy's Fermilab.

    New Measurement Yields Smaller Proton Radius

    New Measurement Yields Smaller Proton Radius

    Physicists get closer to solving the proton radius puzzle with unique new measurement of the charge radius of the proton.

    A Game-Changing Test for Prion, Alzheimer's, and Parkinson's Diseases is on the Horizon

    A Game-Changing Test for Prion, Alzheimer's, and Parkinson's Diseases is on the Horizon

    A new test agent can easily and efficiently detect the misfolded protein aggregates that cause devastating neurological diseases in blood samples. The technology could lead to early diagnosis of prion, Alzheimer's, and Parkinson's diseases for the first time.


    • Filters

    • × Clear Filters
    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven's Superconducting Magnet Division will partner with industry to develop and characterize superconducting power cables.

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    Going on its fourth year, DOE's CyberForce Competition(tm) on Nov. 15-16 will give teams of cybersecurity students and professionals the opportunity to compete and refine their skills in real-time at 10 national laboratories across the U.S.

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen's work on how massive objects bend light from distant galaxies is aimed at unraveling some of the greatest mysteries of modern physics: What is dark matter? What is dark energy, and how is it accelerating the expansion of the universe?

    DOE Announces FY 2020 Small Business Innovation Research Funding Opportunity

    The Department of Energy (DOE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs issued its FY 2020 Phase II Release 1 Funding Opportunity Announcement (FOA) with approximately $97 million in available funding.

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    A joint effort by the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago has led to a prestigious R&D 100 Award and is expected to bring an innovation closer to market so it ultimately can be used in many industrial applications.

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    The U.S. Department of Energy announced that it has awarded scientists at its Fermi National Accelerator Laboratory funding to boost research on dark matter, the mysterious substance that makes up an astounding 85% of the matter in the universe.

    Fermilab Scientist Xingchen Xu Receives Prestigious DOE Award to Develop Superconductors

    Fermilab Scientist Xingchen Xu Receives Prestigious DOE Award to Develop Superconductors

    Fermilab scientist Xingchen Xu has received the prestigious $2.5 million Department of Energy Early Career Research Award to fund his five-year mission: advancing two technologies that will improve the performance niobium-tin superconductor by 50% or more, allowing for smaller coils, stronger magnetic fields and lower costs.

    ORNL to take on nine power grid modernization projects as part of DOE award

    ORNL to take on nine power grid modernization projects as part of DOE award

    Oak Ridge National Laboratory researchers will lead two new projects and support seven more to enhance the reliability and resilience of the nation's power grid as part of the U.S. Department of Energy's 2019 Grid Modernization Lab Call.

    Berkeley Lab Innovations Recognized With 3 R&D 100 Awards

    Berkeley Lab Innovations Recognized With 3 R&D 100 Awards

    Cutting-edge technologies from Lawrence Berkeley National Laboratory (Berkeley Lab) to detect radiation, make buildings more energy efficient, and accelerate neuroscience research were honored with R&D 100 Awards by R&D World magazine.

    Argonne and partners take home nine R&D 100 Awards in 2019

    Argonne and partners take home nine R&D 100 Awards in 2019

    Research teams at Argonne National Laboratory have won nine R&D 100 awards, three more are named finalists.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight





    Showing results

    0-4 Of 2215