DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-10-02 15:05:42
    • Article ID: 720059

    Argonne Receives More Than $1 Million for Quantum Information Science

    • Credit: Shutterstock / Amin Van

      Argonne has received awards totaling more than $1 million from the U.S. Department of Energy for five projects in quantum information science. The awards particularly highlight work in high-energy physics and fusion science.

    New grants specifically award projects in the areas of high energy physics and fusion energy science.

    The U.S. Department of Energy’s (DOE) Argonne National Laboratory has received $1.19 million in funding for five projects related to quantum information science (QIS).

    The grants specifically award projects in the areas of high-energy physics and fusion energy science.

    QIS holds great promise for tackling challenging questions in a wide range of disciplines,” said DOE Under Secretary for Science Paul Dabbar. ​This research will open up important new avenues of investigation in areas like artificial intelligence while helping keep American science on the cutting edge of the growing field of QIS.”

    Research in QIS can reveal aspects of high-energy physics that we have not yet uncovered, and our expertise in high-energy physics can inform how we apply and make use of QIS.” — Kawtar Hafidi, associate laboratory director for Physical Sciences and Engineering

    Research at the intersection of QIS and high-energy physics could yield surprising new discoveries that enrich our understanding of scientific phenomena and principles that scientists are still trying to fully explain. ​Research in QIS can reveal aspects of high-energy physics that we have not yet uncovered, and our expertise in high-energy physics can inform how we apply and make use of QIS,” said Kawtar Hafidi, Argonne associate laboratory director for Physical Sciences and Engineering.

    The five Argonne-involved projects selected by DOE for funding are:

    • Quantum technology for dark matter searches (Argonne Principal Investigator: Peter Barry)

    Researchers are searching for the mysterious substance that makes up a quarter of our Universe: dark matter. One popular theory proposes that it is made of particles called axions which signal their presence by converting into electromagnetic waves in the presence of strong magnetic fields. The level of the signal originating from this hypothetical interaction is extremely small and requires novel technology for its detection. Argonne researchers are leading a team to develop the specialized ultra-sensitive detectors that are able to detect electromagnetic waves in the terahertz frequency range. Using a novel combination of superconducting detectors coupled with state-of-the-art quantum-limited technologies, the development of these detectors will open up a whole new class of experiments to target the elusive axion.

    • Discovering new microscopic descriptions of lattice field theories with bosons (Argonne Principal Investigator: James Osborn)

    This project aims to find new ways to simulate fundamental theories of nature, such as the strong nuclear force, on a quantum computer. This is a difficult problem since the carriers of the fundamental forces, particles called gauge bosons, are typically represented by an infinite (or at least very large) set of states at a point in space, in contrast to the relatively small set of states one has available on current quantum computers. Argonne researchers will use methods inspired by quantum information science to find new representations for the gauge bosons that can reproduce the theory to high accuracy while using only a small number of states.

    • Large-scale simulations of quantum systems on high-performance computers with analytics for high-energy physics algorithms (Argonne Principal Investigator: Yuri Alexeev)

    The primary objective of this Fermilab-led project is to combine high-energy physics simulation experience with high performance computing-based quantum computer simulations to provide an environment for executing large-scale experiments with advanced analysis capabilities. These simulations could enable the study of multi-qubit reduced-noise, long-coherence-time quantum systems (such as superconducting radio frequency (RF) cavities integrated with reduced noise sensitivity transmon qubits). The ultimate goal is to help design superconducting RF qubits with record long coherence times, which can be used in a multi-qubit quantum computer-type system.

    • Quantum computing for fusion energy (Argonne Principal Investigator: Yuri Alexeev)

    In this proposal, Argonne and General Atomics will explore the static and dynamic properties of beryllium hydride systems on quantum computing hardware and quantum emulators by extending existing methods to include excitations, extended basis sets, time-dependent Hamiltonians, and hybrid quantum-classical methods. The goal of the project is to explore how quantum computing can help to simulate properties of materials that are important for fusion energy applications.

    • Quantum devices for neutrino and rare particle detection (Argonne Principal Investigator: Clarence Chang)

    This MIT-led project will apply techniques for qubit readout to detectors for rare and exotic particle experiments. It takes advantage of the strong overlap between superconducting qubits and superconducting detectors, as the technology and techniques employed in rare particle searches mirror those already employed by quantum engineers in the development of quantum devices and computers. The two communities share similar challenges: scaling, increased signal sensitivity, and strict manufacturing tolerances for operations at low temperatures.

    The research will integrate highly sensitive transition edge sensors developed at Argonne with low-threshold detectors and with highly sensitive quantum amplifiers. The goal is to develop a readout technology appropriate for both quantum computing and studies of dark matter and neutrinos.

    Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

    The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    AI for Plant Breeding in an Ever-Changing Climate

    AI for Plant Breeding in an Ever-Changing Climate

    In this Q&A, Oak Ridge National Laboratory's Dan Jacobson talks about his team's work on a genomic selection algorithm, his vision for the future of environmental genomics, and the space where simulation meets AI.

    A New Parallel Strategy for Tackling Turbulence on Summit

    A New Parallel Strategy for Tackling Turbulence on Summit

    A team at Georgia Tech created a new turbulence algorithm optimized for the Summit supercomputer. It reached a performance of less than 15 seconds of wall-clock time per time step for more than 6 trillion grid points--a new world record surpassing the prior state of the art in the field for the size of the problem.

    Modeling Every Building in America Starts with Chattanooga

    Modeling Every Building in America Starts with Chattanooga

    An ORNL team used the Titan supercomputer to model every building serviced by the Electric Power Board of Chattanooga--all 178,368 of them--and discovered that EPB could potentially save $11-$35 million per year by adjusting electricity usage during peak critical times.

    Climate Change Expected to Shift Location of East Asian Monsoons

    Climate Change Expected to Shift Location of East Asian Monsoons

    More than a billion people in Asia depend on seasonal monsoons for their water needs. The Asian monsoon is closely linked to a planetary-scale tropical air flow which, according to a new study by Lawrence Berkeley National Laboratory, will most likely shift geographically as the climate continues to warm, resulting in less rainfall in certain regions.

    Nuclear warheads? This robot can find them

    Nuclear warheads? This robot can find them

    PPPL and Princeton University are developing a unique neutron-detector robot for arms control and nuclear security purposes. The robot recently passed a key neutron-detection test.

    Deep neural networks speed up weather and climate models

    Deep neural networks speed up weather and climate models

    A team of environmental and computation scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory are collaborating to use deep neural networks, a type of machine learning, to replace the parameterizations of certain physical schemes in the Weather Research and Forecasting Model, an extremely comprehensive model that simulates the evolution of many aspects of the physical world around us.

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    A new approach developed by PNNL scientists improves the accuracy of patient diagnosis up to 20 percent when compared to other embedding approaches.

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Experiments at Berkeley Lab are casting a new light on Egyptian soil and ancient mummified bone samples that could provide a richer understanding of daily life and environmental conditions thousands of years ago. In a two-monthslong research effort that concluded in late August, two researchers from Cairo University in Egypt brought 32 bone samples and two soil samples to study using X-ray and infrared light-based techniques at the Lab's Advanced Light Source.

    Etalumis 'Reverses' Simulations to Reveal New Science

    Etalumis 'Reverses' Simulations to Reveal New Science

    A multinational collaboration using computing resources at the National Energy Research Scientific Computing Center has developed the first probabilistic programming framework capable of controlling existing simulators and running at large-scale on HPC platforms.

    Deep Learning Expands Study of Nuclear Waste Remediation

    Deep Learning Expands Study of Nuclear Waste Remediation

    A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation


    • Filters

    • × Clear Filters
    ASU solar awards eclipse other universities in latest round of DOE funding

    ASU solar awards eclipse other universities in latest round of DOE funding

    ASU receives $9.8 million in Solar Energy Technologies Office Awards.

    DOE to Provide $10 Million for New Research into Ecosystem Processes

    The U.S. Department of Energy (DOE) announced a plan to provide $10 million for new observational and experimental studies aimed at improving the accuracy of today's Earth system models. Research will focus on three separate types of environments--terrestrial, watershed, and subsurface--where current models fall short of providing fully accurate representation.

    ORNL to host 13 teams for DOE CyberForce Competition

    ORNL to host 13 teams for DOE CyberForce Competition

    Oak Ridge National Laboratory will give college students the chance to practice cybersecurity skills in a real-world setting as a host of the Department of Energy's fifth collegiate CyberForce Competition on Nov. 16.

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart has been named to Crain's Chicago Business's "40 Under 40" list, which recognizes young leaders in a variety of fields.

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Argonne National Laboratory has won a regional Federal Green Challenge award for conserving resources and saving taxpayers' money.

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    The Princeton Plasma Physics Laboratory receives funding from the U.S. Department of Energy for two projects to encourage entrepreneurship and mentor and encourage potential entrepreneurs.

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven's Superconducting Magnet Division will partner with industry to develop and characterize superconducting power cables.

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    Going on its fourth year, DOE's CyberForce Competition(tm) on Nov. 15-16 will give teams of cybersecurity students and professionals the opportunity to compete and refine their skills in real-time at 10 national laboratories across the U.S.

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen's work on how massive objects bend light from distant galaxies is aimed at unraveling some of the greatest mysteries of modern physics: What is dark matter? What is dark energy, and how is it accelerating the expansion of the universe?

    DOE Announces FY 2020 Small Business Innovation Research Funding Opportunity

    The Department of Energy (DOE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs issued its FY 2020 Phase II Release 1 Funding Opportunity Announcement (FOA) with approximately $97 million in available funding.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight





    Showing results

    0-4 Of 2215