DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-09-12 11:00:34
    • Article ID: 718864

    A Single Dose for Good Measure: How an Anti-Nuclear-Contamination Pill Could Also Help MRI Patients

    Same pill designed to treat radiation poisoning could double as an anti-gadolinium-toxicity pill for MRI patients injected with commonly used contrast dye, say Berkeley Lab scientists

    • Credit: Marilyn Chung/Berkeley Lab

      Rebecca Abergel

    • Credit: Marilyn Chung/Berkeley Lab

      An anti-radiation-poisoning pill developed by Berkeley Lab's Rebecca Abergel could also help to protect people from the potential toxicity of gadolinium, a critical ingredient in widely used contrast dyes for MRI scans.

    When chemist Rebecca Abergel and her team at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) successfully developed an anti-radiation-poisoning pill in 2014, they hoped it would never have to be used.

    That’s because the active pharmaceutical ingredient in the pill – what scientists call a “chelator” – is designed to remove radioactive contaminants from the body in the event of something horrible, like a nuclear reactor meltdown, or even worse: surviving a nuclear attack.

    Now the researchers are studying how that very same pill could help to protect people from the potential toxicity of something else – the long-term retention of gadolinium, a critical ingredient in widely used contrast dyes for MRI (magnetic resonance imaging) scans.

    “I’ve always been interested in public health applications,” Abergel said. “Our current work could help thousands of patients who rely on MRIs to have a better understanding of where a tumor might be located and whether it’s cancerous and has spread to other organs but are concerned about the potential side effects caused by the retention of gadolinium inside the body.”

    Symptoms without a cause?

    In the U.S. alone, physicians prescribe MRIs to about 30 million patients every year. Unlike medical X-rays, MRI scans take detailed images of the soft-tissue composition of a patient’s organs, such as the heart, liver, kidney, blood vessels, and brain. MRIs can also help to diagnose muscle sprains and torn ligaments.

    Whereas X-rays employ high-energy ionizing radiation, MRIs use a large magnet, radio waves, and a computer to cause the hydrogen atoms inside our bodies to emit tiny magnetic fields that, when detected, are used to create detailed whole-body images of internal organs, muscles, tendons, and bone. 

    Ever since they became commercially available in the 1980s, MRIs have long been considered to be safe. Some say that the introduction of GBCAs, or gadolinium-based contrast agents, helped to further revolutionize MRIs by improving the visibility of blood vessels within the brain and the heart.

    When injected into the body, GBCAs enhance the signal emitted by the body’s hydrogen atoms during an MRI scan, which without a GBCA can become weaker and change direction over time. Nowadays, about a third of all MRIs are performed with a GBCA.

    Gadolinium – a silvery-white, rare-earth metal – is one of 15 metallic chemical elements in what is known as the lanthanide series at the bottom of the periodic table. Gadolinium is a heavy metal that on its own is toxic to the body. So as a contrast agent it needs to be bound to a molecule that helps to rapidly clear gadolinium from the body, in particular from the kidneys, through urination.

    But in recent years, a growing number of MRI patients have reported feeling unusual symptoms – such as joint pain, body aches, and loss of memory within days and sometimes even hours after an MRI scan. Some patients have also reported long-term chronic side effects such as kidney damage. According to Abergel, those symptoms could be linked to gadolinium, which has been shown to deposit in bones. Other studies have found gadolinium deposits in the brains of MRI patients who were administered GBCAs.

    Some patients have suspected that the source of their new illnesses is the GBCA injected into their bodies before undergoing an MRI.

    There is currently not enough scientific evidence to prove that there is a link, but Abergel hopes to fill in the gap: “With funding from generous supporters through the Berkeley Lab Foundation, we were able to establish The Marcie Jacobs Fund for Gadolinium Toxicity Research and start investigating how gadolinium interacts with biological molecules and organs. What does gadolinium do that would result in toxicity and observable symptoms in patients?” she said.

    Finding better ways to reduce toxic gadolinium retention in the body

    While Abergel’s anti-radiation-poisoning pill was approved for its first in-human Phase 1 safety trial in 2014, she and her team noted that the chelator – a HOPO or hydroxypyridinone ligand – lends itself to being administered in a pill, is nontoxic when administered in therapeutic dosages, and is not only highly selective for plutonium and other heavy, radioactive elements (known as actinides), but is also highly selective for lanthanides such as gadolinium.

    “So, we thought that we should investigate whether this HOPO chelator could remove gadolinium deposits from MRI patients after the contrast agent has done its job,” she said.

    As reported in 2018 in the Nature online publication Scientific Reports, Abergel and her team used animal models to demonstrate that, when compared to conventional chelators such as diethylenetriamine pentaacetic acid or DTPA, their HOPO chelator is many times more effective at removing gadolinium deposits.

    “We also found that if we give the drug right before or right after the MRI, we can prevent up to 96% of the gadolinium from depositing,” said Abergel.

    The researchers also found that their HOPO chelator is more selective of gadolinium than DTPA. When DTPA binds to gadolinium, for example, it can also bind to and deplete the body of important minerals such as calcium and zinc, she explained.

    Abergel and her research team are now looking into which patient populations would be more vulnerable to gadolinium toxicity.

    “What would affect larger or smaller gadolinium retention and where does it end up? It depends on how fast you can clear it out, and how well your kidneys function,” she said.

    Abergel added that while the HOPO chelator’s development as a medical countermeasure or anti-nuclear-contamination pill has already largely been supported by federal agencies such as the National Institutes of Health and the Biomedical Advanced Research and Development Authority, she and her team have now reached a stage where they need to identify other sources of funding to complete a first clinical safety study for the drug’s development as a gadolinium removal agent.

    Chemistry for the common good: How Berkeley Lab paved the way

    Abergel’s work on chelators is the latest chapter in a landmark project first conceived more than 35 years ago by Kenneth Raymond, a Berkeley Lab faculty senior scientist and UC Berkeley chemistry professor who worked closely with Berkeley Lab biophysicist Patricia Durbin-Heavey to test a large number of new chelating compounds for the removal of actinides such as plutonium from the body.

    “This is the kind of research that could only take place in a national lab setting,” said Abergel. “Here at Berkeley Lab we have access to research facilities that allow us to do this work in a well-controlled, well-implemented, and safe environment. It would be difficult to find all of these capabilities in one place anywhere else.”

    Development of HOPO as a medical countermeasure against nuclear threats was supported by the National Institutes of Health and the Biomedical Advanced Research and Development Authority. Subsequent work on gadolinium decorporation was supported by an Innovation Grant from Lawrence Berkeley National Laboratory. These technologies are available for licensing and collaboration. If interested, please contact Berkeley Lab’s Intellectual Property Office, ipo@lbl.gov.

    # # #

    Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.    

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Researchers at the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing.

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Surprise discovery shows that turbulence at the edge of the plasma may facilitate production of fusion energy.

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    Researchers at Argonne National Laboratory have designed and tested a new electrolyte composition that could greatly accelerate the adoption of the next generation of lithium-ion batteries.


    • Filters

    • × Clear Filters
    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak, director of Lawrence Berkeley National Laboratory's Nuclear Science Division since 2015, has been named a 2019 Distinguished Scientist Fellow by the U.S. Department of Energy's Office of Science.

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have garnered two out of five "Distinguished Scientists Fellow" awards announced today by the DOE's Office of Science. Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and Jose Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields.

    Department of Energy Announces Private-Public Awards to Advance Fusion Energy Technology

    The U.S. Department of Energy (DOE) announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development. The awards are the first provided through the Innovation Network for Fusion Energy program (INFUSE).

    Denisov Leads High Energy Physics at Brookhaven

    Denisov Leads High Energy Physics at Brookhaven

    Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named Deputy Associate Lab Director for High Energy Physics at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory.

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Zulipiya Shadike, a postdoctoral fellow in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, received a Young Investigator Award from the Battery500 Consortium, a DOE-sponsored consortium led by Pacific Northwest National Laboratory (PNNL) that aims to improve electric vehicle batteries.

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    The American Physical Society (APS) has elected two scientists from Brookhaven National Laboratory as 2019 APS fellows.

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Profile of physicist Stefan Gerhardt who has been elected a 2019 fellow of the American Physical Society.

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    Scientists from DOE's Pacific Northwest National Laboratory, DOE's Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne scientists receive $1.19 million from DOE for quantum research.

    Department of Energy Announces $6.6 Million to Study Dark Matter

    The U.S. Department of Energy (DOE) announced $6.6 million for four new research awards to develop design concepts for dark matter search experiments.


    • Filters

    • × Clear Filters
    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.

    Even Hard Materials Have Soft Spots

    Even Hard Materials Have Soft Spots

    The Achilles Heel of "metallic glasses" is that while they are strong materials--even stronger than conventional steels--they are also very brittle. The initial failures tend to be localized and catastrophic. This is due to their random amorphous (versus ordered crystalline) atomic structure. Computer simulations revealed that the structure is not completely random, however, and that there are some regions in the structure that are relatively weak. Defects nucleate more easily in these regions, which can lead to failure. This understanding of the mechanical properties has led to a strategy for making the material stronger and less brittle.

    2-D Atoms Do the Twist

    2-D Atoms Do the Twist

    In the study, scientists demonstrated, for the first time, an intrinsically rotating form of motion for the atoms in a crystal. The observations were on collective excitations of a single molecular layer of tungsten diselenide. Whether the rotation is clockwise or counter-clockwise depends on the wave's propagation direction.

    Location, Location, Location... How charge placement can control a self-assembled structure

    Location, Location, Location... How charge placement can control a self-assembled structure

    For years, scientists have formed polymers using the interaction of charges on molecular chains to determine the shape, geometry, and other properties. Now, a team achieved precise and predictable control of molecular chains by positioning charges. Their method leads to particles with reproducible sizes.

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Alloys (metals combining two or more metallic elements) are typically stronger and less susceptible to cracking than pure metals. Yet when alloys are subjected to stress and a harsh chemical environment, the alloy can fail. The reason? Cracks caused by corrosion.

    Simultaneous Clean and Repair

    Simultaneous Clean and Repair

    Scientists have developed a novel and efficient approach to surface cleaning, materials transport, and repair.


    Spotlight





    Showing results

    0-4 Of 2215