DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-09-12 10:00:49
    • Article ID: 718861

    Science Snapshots: messenger proteins, new TB drug, artificial photosynthesis

    • Credit: Tsvetkov Maxim/Shutterstock

      The findings came from an analysis of 1,773 human-associated metagenomes sampled from four different body sites.

    • Credit: TB Alliance

      Pretomanid pill. The drug was developed by the nonprofit TB Alliance.

    • Credit: Walter Drisdell/Berkeley Lab

      The team's electrochemical cell for observing solar fuel-generating catalysts (yellow device), set up at an x-ray beamline at the Stanford Synchrotron Radiation Lightsource.

    Decoding Messages in the Body’s Microscopic Metropolises 

    by Aliyah Kovner

    A study aimed at identifying and examining the small messenger proteins used by microbes living on and inside humans has revealed an astounding diversity of more than 4,000 families of molecules – many of which have never been described previously.

    The research, led by Stanford University and now published in Cell, lays the groundwork for future investigations into how the trillions of bacteria, archaea, and fungi that compose human microbiomes compete for resources, attack and co-exist with one another, and interact with our own cells. “Because it is much more difficult to search for sequences encoding small proteins than it is to trawl for large proteins, our comprehension of the small proteins expressed by microbial communities has always been lacking,” said Nikos Kyrpides, a Berkeley Lab senior scientist who contributed to the work. Yet, very small proteins made of 50 or fewer amino acids, which can move though cell walls and membranes, perform many essential tasks that mediate an organism's interactions with the environment. These functions, combined with the fact that they are easier to synthesize and manipulate than large molecules, make small microbial proteins a potential source of new medicines.

    Learn more about this study here.

    X-ray Experiments Contribute to Studies of a Drug Now Approved to Combat Tuberculosis

    By Glenn Roberts

    The U.S. Food and Drug Administration has approved a new antibiotic that, in combination with two existing antibiotics, can tackle one of the most formidable and deadly treatment-resistant forms of the bacterium that causes tuberculosisThe new antibiotic, called pretomanid (PA-824), can work with the other drugs like a deadly cocktail – triggering the bacteria (Mycobacterium tuberculosis) to release nitric oxide. This can burst the bacteria’s cell walls and poison the microorganisms. 

    Studies exploring the structure and function of the new drug benefited from X-ray experiments at Berkeley Lab’s Advanced Light Source (ALS). ALS experiments detailed the molecular structure of Ddn, a tuberculosis bacterium enzyme, in the presence and absence of a coenzyme (F420). Coenzymes, or cofactors, can help enzymes carry out chemical reactions. SLAC National Accelerator Laboratory’s Stanford Synchrotron Radiation Lightsource (SSRL) also carried out related experiments. ALS and SSRL are DOE Office of Science user facilities.

    Drug-resistant strains of tuberculosis bacteria infected an estimated 558,000 people in 2017. Existing treatments are often unsuccessful and can include as many as eight antibiotics taken for 18 months or longer. The World Health Organization has reported a 55% success rate in treating multi-drug resistant tuberculosis using existing treatments.

    In a Phase III clinical trial, the three-drug regimen that includes the new FDA-approved antibiotic cleared the infection within six months from 95 of 109 patients who were unresponsive to previous treatments.

    Work at the ALS has also benefited research into cancer-fighting drugs, and the fight against the Ebola and Zika viruses, among other examples.

    Read the FDA announcement:

    FDA approves new drug for treatment-resistant forms of tuberculosis that affects the lungs

    A Chemical Reaction Close-Up: New Technology Gives a Glimpse of Solar Fuel Generation in Action

    By Aliyah Kovner

    Electrochemical devices that use sunlight to generate fuel represent a promising means of harvesting sustainable energy; but currently, none are efficient enough for real-world applications. One of the main reasons for the slow development is the difficulty in observing and measuring what is happening at the liquid-catalyst interface – the location in the cell where the fuel-producing chemical reactions are taking place – without interfering with the processes. 

    Hoping to break this barrier, scientists at the Joint Center for Artificial Photosynthesis, a Department of Energy Innovation Hub based partly at Berkeley Lab, have invented a cell that is specially designed to allow for unobtrusive observation of an isolated, operating catalyst. A description of the cell is published in Physical Chemistry Chemical Physics

    “Our design can mimic how a catalyst behaves in a full device, thanks to a fast-flow design that constantly replenishes the liquid at the interface,” said lead author Walter Drisdell, a Berkeley Lab chemist.  “And the cell shape allows X-ray beams to graze over the surface, showing us the chemistry at the interface specifically.”

    The cell is expected to help scientists engineer and test new catalyst materials, which can be used in next-generation solar fuel devices that split water to produce hydrogen gas and convert carbon dioxide emissions into fuels like ethanol.

    “We intend to make the cell available to users at the DOE’s Stanford Synchrotron Radiation Lightsource (SSRL) facility so the entire science community can benefit from it,” said Drisdell. SSRL is a DOE Office of Science user facility.

    Media contact: Laurel Kellner, LKellner@lbl.gov, 510-590-8034

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    Researchers at Argonne National Laboratory have designed and tested a new electrolyte composition that could greatly accelerate the adoption of the next generation of lithium-ion batteries.

    Light My Fire: How to Startup Fusion Devices Every Time

    Light My Fire: How to Startup Fusion Devices Every Time

    Researchers have constructed a framework for starting and raising a fusion plasma to temperatures rivaling the sun in hundreds of milliseconds.

    Atomic-level Imaging Could Offer Roadmap to Metals with New Properties

    Atomic-level Imaging Could Offer Roadmap to Metals with New Properties

    A team of researchers at the Georgia Institute of Technology has developed a new process that could help gain new insights into individual high-entropy alloys and help characterize their properties.


    • Filters

    • × Clear Filters
    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak, director of Lawrence Berkeley National Laboratory's Nuclear Science Division since 2015, has been named a 2019 Distinguished Scientist Fellow by the U.S. Department of Energy's Office of Science.

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have garnered two out of five "Distinguished Scientists Fellow" awards announced today by the DOE's Office of Science. Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and Jose Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields.

    Department of Energy Announces Private-Public Awards to Advance Fusion Energy Technology

    The U.S. Department of Energy (DOE) announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development. The awards are the first provided through the Innovation Network for Fusion Energy program (INFUSE).

    Denisov Leads High Energy Physics at Brookhaven

    Denisov Leads High Energy Physics at Brookhaven

    Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named Deputy Associate Lab Director for High Energy Physics at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory.

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Zulipiya Shadike, a postdoctoral fellow in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, received a Young Investigator Award from the Battery500 Consortium, a DOE-sponsored consortium led by Pacific Northwest National Laboratory (PNNL) that aims to improve electric vehicle batteries.

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    The American Physical Society (APS) has elected two scientists from Brookhaven National Laboratory as 2019 APS fellows.

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Profile of physicist Stefan Gerhardt who has been elected a 2019 fellow of the American Physical Society.

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    Scientists from DOE's Pacific Northwest National Laboratory, DOE's Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne scientists receive $1.19 million from DOE for quantum research.

    Department of Energy Announces $6.6 Million to Study Dark Matter

    The U.S. Department of Energy (DOE) announced $6.6 million for four new research awards to develop design concepts for dark matter search experiments.


    • Filters

    • × Clear Filters
    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.

    Even Hard Materials Have Soft Spots

    Even Hard Materials Have Soft Spots

    The Achilles Heel of "metallic glasses" is that while they are strong materials--even stronger than conventional steels--they are also very brittle. The initial failures tend to be localized and catastrophic. This is due to their random amorphous (versus ordered crystalline) atomic structure. Computer simulations revealed that the structure is not completely random, however, and that there are some regions in the structure that are relatively weak. Defects nucleate more easily in these regions, which can lead to failure. This understanding of the mechanical properties has led to a strategy for making the material stronger and less brittle.

    2-D Atoms Do the Twist

    2-D Atoms Do the Twist

    In the study, scientists demonstrated, for the first time, an intrinsically rotating form of motion for the atoms in a crystal. The observations were on collective excitations of a single molecular layer of tungsten diselenide. Whether the rotation is clockwise or counter-clockwise depends on the wave's propagation direction.

    Location, Location, Location... How charge placement can control a self-assembled structure

    Location, Location, Location... How charge placement can control a self-assembled structure

    For years, scientists have formed polymers using the interaction of charges on molecular chains to determine the shape, geometry, and other properties. Now, a team achieved precise and predictable control of molecular chains by positioning charges. Their method leads to particles with reproducible sizes.

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Alloys (metals combining two or more metallic elements) are typically stronger and less susceptible to cracking than pure metals. Yet when alloys are subjected to stress and a harsh chemical environment, the alloy can fail. The reason? Cracks caused by corrosion.

    Simultaneous Clean and Repair

    Simultaneous Clean and Repair

    Scientists have developed a novel and efficient approach to surface cleaning, materials transport, and repair.

    Where Does Salt in the Amazon Air Come From?

    Where Does Salt in the Amazon Air Come From?

    Tiny particles of sodium salt float in the air over the pristine Amazon basin. Why? The only explanation before now has been that winds blow marine particles hundreds of miles inland from the Atlantic Ocean. An international team of scientists used chemical imaging and atmospheric models to prove otherwise.


    Spotlight





    Showing results

    0-4 Of 2215