DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-08-27 11:05:17
    • Article ID: 718063

    Smelling is Believing

    PNNL vapor detection technology quickly and accurately identifies explosives, deadly chemicals, and illicit drugs

    • Credit: Andrea Starr | PNNL

      PNNL Vapor Detector

    • Credit: Andrea Starr | PNNL

      PNNL Research Scientist, Robert Ewing

    Richland, Wash.-- Floppy-eared sniffer dogs made news earlier this year as the latest change to security screening procedures at airports. But in the not-too-distant future, they could be replaced with a technology that doesn’t tire, get distracted, or require feeding or training.

    An ultrasensitive technology developed by PNNL researchers detects explosive vapors, deadly chemicals, and illicit drugs with unparalleled accuracy. And it works in seconds. 

    First described in the journal Analytical Chemistry, their ion chemistry technique initially identified RDX—a common explosive compound—at 10 parts per quadrillion (ppq). Robert Ewing, a chemist at PNNL and one of the inventors of the technology, compared that level of sensitivity to “finding a single pine needle in the state of Washington.”

    The original technology also identified explosive compounds such as C-4, PETN, Semtex, nitroglycerin, and tetryl. Ewing and his colleagues have since advanced the system to detect many more explosive vapors, including TNT, as well as vapors emanating from toxic chemicals similar in structure to nerve agents. The latest enhancement is the ability to detect vapors from illicit drugs such as fentanyl, methamphetamine, and cocaine.

    The non-contact technology could be a game-changer for transportation hubs, mail facilities, and other safety and security screening applications.

    The technology works by sucking an air sample into a narrow metal tube. Inside the tube, the sample collides with chemical ions and creates a positive or negative charge on the way toward the inlet of a mass spectrometer. The mass spectrometer measures, or detects, the ions of interest based on their charge and mass. Users can adjust the ionization source to selectively react with the compound of interest.

    “This is an excellent example of how national laboratories address difficult national challenges,” said David Atkinson, a research scientist in PNNL’s Signature Sciences and Technology Division. Atkinson was Ewing’s collaborator and sounding board on the technology, especially in the early years of development as they overcame barriers in understanding “the art of the possible” when the technology greatly surpassed the performance of state-of-the-art systems—and their expectations.

    Proving It

    Airports began using infrared handheld detectors and benchtop X-ray machines in the 1990s to screen cargo for chemical weapons and drugs. Soon after 9/11, Ewing, then an assistant professor at New Mexico Institute of Mining and Technology, was asked about the potential to detect and identify explosive vapors. He waffled, because with the miniscule levels of vapor that would be present, he didn’t think it could be done.

    In 2006, with a growing reputation for expertise in atmospheric pressure ionization chemistry, Ewing came to PNNL to lead a project under the laboratory’s Initiative for Explosives Detection, led by Atkinson. At that time, detection technologies couldn’t measure explosive vapors below parts per trillion at room temperature. The molecules in explosives have very low vapor pressure, so they don’t easily escape from their solid form into a vapor.

    That’s why common security screening methods rely on contact swabs or swipes—a physical sample, which is then heated and analyzed. These methods are intrusive, labor intensive, and time consuming. Sniffer dogs are an alternative, but in addition to needing rest, they’re also expensive to train and care for.

    Plus, Ewing wasn’t convinced what the dogs were really smelling. Then one day during a conference, he saw a demonstration video.

    “This guy placed buckets all around a room and put purified RDX in one of the buckets. Then he brought in a trained sniffer dog. That dog immediately hit on the RDX.”

    Ewing was a believer.

    The Aha Moment

    In the lab, Ewing worked on the chemistry for vapor detection. He needed to determine how much of a certain chemical was is in the vapor and whether it could be ionized.

    During ionization, electrically neutral atoms or molecules are converted to electrically charged ions. This electric charge is necessary for detection in a mass spectrometer. It comes down to a competition between sensitivity and selectivity—how many collisions are needed to detect a certain ion, or chemical vapor.

    One day, Ewing looked at the setup and thought: “More time equals more collisions. More collisions equal greater sensitivity. Maybe this idea will work.”

    He moved the sample inlet and the ionization source further away from the spectrometer. This created more distance—and therefore time—for the chemical ions and sample molecules to bump into each other and react. The small leap from milliseconds to a few seconds made all the difference.

    “All the separate pieces were there, but we just hadn’t thought how to put them together. It was so simple,” said Ewing. “When that happens, you wonder why you hadn’t thought of it before, but sometimes that’s just how it works.”

    Dividing and Conquering

    News of their initial RDX vapors research created an immediate buzz. Outlets such as Smithsonian magazine, Popular Science, and the New York Times covered the technology in 2012 and 2013.

    But initially, it couldn’t detect TNT, another very common explosive material. This surprised them—and, according to Ewing, “disappointed others.”

    Now with help from colleague Blandina Valenzuela, also a chemist, he went back to work in the lab. They found a way to adjust the ionization chemistry and detect TNT within their system.  Another major advancement came when they modified the air tube into two separate channels. This allowed them to simultaneously detect TNT and similar compounds on one side and other explosive compounds, such as RDX or nitroglycerine, on the other side. 

    Working from the same general concept, Ewing and Valenzuela advanced the technology for greater sensitivity and the ability to detect more types of compounds. The sensitivity of the technology became the bridge to detecting vapors from organophosphates—or deadly chemicals—and narcotics.

    Ewing cautions it’s not a one-size-fits-all black box. It can’t see everything at once and must be tailored or customized for the substance(s) of interest. But the same general technology applies—“you just have to tweak the chemistry,” explained Ewing.

    The team described the chemistry tweaks in two more research papers published in May 2018. One paper covered homemade explosives, the other covered organophosphates and narcotics, with detection capabilities at concentrations at 100 ppq or better and 160 ppq or better, respectively. These results are orders of magnitude lower than any current technology. 

    So far, the team has two patents on its invention and another is in the works. Before a public version hits the streets—or the airport, or the mailroom, or any number of places where public safety is imperative—portability and integration into existing screening methods are key hurdles that need to be overcome.

    For safety and security, the race is worth it. 

    About PNNL

    Pacific Northwest National Laboratory draws on signature capabilities in chemistry, earth sciences, and data analytics to advance scientific discovery and create solutions to the nation's toughest challenges in energy resiliency and national security. Founded in 1965, PNNL is operated by Battelle for the U.S. Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit PNNL's News Center. Follow us on Facebook,Instagram, LinkedIn and Twitter.

    ###

    Media Contact:

    Nick Hennen

    Media Relations Advisor

    509-554-4533

    nick@pnnl.gov

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Researchers at the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing.

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Surprise discovery shows that turbulence at the edge of the plasma may facilitate production of fusion energy.

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    Researchers at Argonne National Laboratory have designed and tested a new electrolyte composition that could greatly accelerate the adoption of the next generation of lithium-ion batteries.


    • Filters

    • × Clear Filters
    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak, director of Lawrence Berkeley National Laboratory's Nuclear Science Division since 2015, has been named a 2019 Distinguished Scientist Fellow by the U.S. Department of Energy's Office of Science.

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have garnered two out of five "Distinguished Scientists Fellow" awards announced today by the DOE's Office of Science. Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and Jose Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields.

    Department of Energy Announces Private-Public Awards to Advance Fusion Energy Technology

    The U.S. Department of Energy (DOE) announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development. The awards are the first provided through the Innovation Network for Fusion Energy program (INFUSE).

    Denisov Leads High Energy Physics at Brookhaven

    Denisov Leads High Energy Physics at Brookhaven

    Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named Deputy Associate Lab Director for High Energy Physics at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory.

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Zulipiya Shadike, a postdoctoral fellow in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, received a Young Investigator Award from the Battery500 Consortium, a DOE-sponsored consortium led by Pacific Northwest National Laboratory (PNNL) that aims to improve electric vehicle batteries.

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    The American Physical Society (APS) has elected two scientists from Brookhaven National Laboratory as 2019 APS fellows.

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Profile of physicist Stefan Gerhardt who has been elected a 2019 fellow of the American Physical Society.

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    Scientists from DOE's Pacific Northwest National Laboratory, DOE's Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne scientists receive $1.19 million from DOE for quantum research.

    Department of Energy Announces $6.6 Million to Study Dark Matter

    The U.S. Department of Energy (DOE) announced $6.6 million for four new research awards to develop design concepts for dark matter search experiments.


    • Filters

    • × Clear Filters
    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.

    Even Hard Materials Have Soft Spots

    Even Hard Materials Have Soft Spots

    The Achilles Heel of "metallic glasses" is that while they are strong materials--even stronger than conventional steels--they are also very brittle. The initial failures tend to be localized and catastrophic. This is due to their random amorphous (versus ordered crystalline) atomic structure. Computer simulations revealed that the structure is not completely random, however, and that there are some regions in the structure that are relatively weak. Defects nucleate more easily in these regions, which can lead to failure. This understanding of the mechanical properties has led to a strategy for making the material stronger and less brittle.

    2-D Atoms Do the Twist

    2-D Atoms Do the Twist

    In the study, scientists demonstrated, for the first time, an intrinsically rotating form of motion for the atoms in a crystal. The observations were on collective excitations of a single molecular layer of tungsten diselenide. Whether the rotation is clockwise or counter-clockwise depends on the wave's propagation direction.

    Location, Location, Location... How charge placement can control a self-assembled structure

    Location, Location, Location... How charge placement can control a self-assembled structure

    For years, scientists have formed polymers using the interaction of charges on molecular chains to determine the shape, geometry, and other properties. Now, a team achieved precise and predictable control of molecular chains by positioning charges. Their method leads to particles with reproducible sizes.

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Alloys (metals combining two or more metallic elements) are typically stronger and less susceptible to cracking than pure metals. Yet when alloys are subjected to stress and a harsh chemical environment, the alloy can fail. The reason? Cracks caused by corrosion.

    Simultaneous Clean and Repair

    Simultaneous Clean and Repair

    Scientists have developed a novel and efficient approach to surface cleaning, materials transport, and repair.


    Spotlight





    Showing results

    0-4 Of 2215