logo
DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-07-31 10:05:37
    • Article ID: 716665

    Moving Forward on Desalination

    A Q&A with scientist Jeff Urban, who explains forward osmosis and how Berkeley Lab is pushing the frontiers of this emerging technology

    • Credit: Berkeley Lab

      Berkeley Lab scientist Jeff Urban

    • Credit: Marilyn Chung/Berkeley Lab

      Rehydrating raisins is a manifestation of forward osmosis, an emerging technology for desalination.

    As global populations grow and water scarcity becomes an increasingly pressing issue, the number of desalination plants is growing. There are now more than 20,000 worldwide, and more than 300 million people around the world rely on desalination for some or all of their daily water needs, according to the International Desalination Association. 

    However, the dominant technology for seawater desalination – reverse osmosis – is now over 50 years old and has its drawbacks. Scientific innovation in this field is urgently needed to bring down the costs and energy intensity of treating water. 

    Scientists at Berkeley Lab have been exploring different approaches for efficiently separating out salt and other contaminants to generate water that’s fit for drinking or other uses, such as agricultural irrigation. For example, they’re looking at charge-based brackish water desalination, nanoconfinement of water, better membranes, and other advanced water treatment techniques

    Another desalination technology that has shown great promise is forward osmosis – it requires far less energy then reverse osmosis, but there are still barriers to wider adoption. Jeff Urban, a staff scientist who specializes in new materials for energy storage and conversion at Berkeley Lab’s Molecular Foundry, a Department of Energy nanoscience research facility, explains what forward osmosis is and how Berkeley Lab is addressing the challenges. 

    Q.How is forward osmosis different from reverse osmosis? 

    Reverse osmosis and forward osmosis are, of course, different versions of the more general scientific principle of osmosis. In osmosis, water moves across a membrane from a region of low solute concentration into high solute concentration. This may seem complex, but we can develop a good intuition for it using the humble raisin. 

    If you put a raisin into water and wait a few hours, it will plump up considerably and become larger and heavier – this is a manifestation of forward osmosis. The raisin is very concentrated in sugars, and its skin is a semipermeable membrane that allows water to pass but not sugar (sugar molecules are much larger than water molecules). Thus, over time, water passes from the region of low concentration of solute (the bulk water) into the region of high concentration of solute (inside the raisin). This, essentially, is forward osmosis. 

    Reverse osmosis is literally the reverse of this process. One could apply a pressure to the plump raisin, or even a grape (carefully), and “push out” the water molecules from the region of high-solute concentration (inside the raisin) into the region of low solute concentration (the bulk water). This same principle is at work in the silica packets (do not eat!) that come with most packaged foods to keep them dry – they are highly concentrated in solute and draw the water in, thus preserving the food from unwanted moisture and rotting. 

    So, how does this connect to desalination at a larger scale? One of the most readily available sources of nonpotable water is the ocean. However, it is salty – ocean water is made up of roughly 3% salt. Reverse osmosis is by far the champion technology in desalination of ocean waters. As per our raisin analogy, it takes salt water and applies a large pressure to a chamber of salt water with a semipermeable membrane optimized for the size of water. As pressure is applied, water flows through the membrane and is collected on the other side – this water is nearly free of salt and can be further treated to be drinkable.

    Forward osmosis is the reverse of this process; however, for desalination it’s a bit more complex than the example with the raisin. We can use the spontaneous movement of water across a membrane into a more concentrated solution to our advantage. Salt can be very hard to remove from water, however, water can be easier to remove from a different high concentration solution. 

    Forward osmosis for desalination exploits this by using a very concentrated “draw” solution to pull the water out of seawater. Again, as with the raisin, this initial flow of water into the draw solvent does not require much energy and can happen spontaneously. Then one performs a simpler separation to isolate the water from the draw solution, yielding desalinated water and the same draw solution to use again in a cyclic process. At Berkeley Lab we have developed draw solutions that pull out water effectively and spontaneously separate from water with application of low amounts of heat. 

    Q. What advantages does forward osmosis have over reverse osmosis? 

    Reverse osmosis (RO) is an established technology but is not without limitations. Due to the high pressures involved, significant amounts of electrical energy are required to operate the process. In addition, materials in the water can foul or scale on the membranes over time which is costly. This is only exacerbated at higher salt concentrations or for more contaminated waters. 

    Forward osmosis (or FO) can play a complementary role in treatment of brackish and higher salinity water and produced waters (from oil and gas operations) as it does not suffer from any intrinsic osmotic pressure limitations. It can also be more tolerant of contaminants that would otherwise foul the membranes used in RO under the large pressures applied. Thus, FO with draw recovery (meaning the draw solution is recycled) can work in places where RO alone cannot – producing high purity water streams for communities that don’t have access to seawater or the electrical supply required to operate RO. It is also gaining increased prominence in wastewater treatment, water reuse, food processing (liquid concentrates), and many other areas. 

    What’s more, FO with draw recovery can be driven by a diversity of energy sources, meaning it can be powered by renewable sources of electricity, such as wind or solar.

    Q. What are the main scientific challenges in getting forward osmosis to work well, and why did Berkeley Lab choose to pursue this?

    While forward osmosis is an extremely promising technology, work remains to be done. The impact of forward osmosis can be expanded if researchers are able to develop reliable, cost-effective draw solutes that surpass inorganic salts, systems that require minimal treatment after recovery, and systems-level approaches that are better able to integrate these technologies with renewable resources (solar, thermal). The inherent challenges of forward osmosis are really a multidisciplinary problem well suited to Berkeley Lab strengths – it touches virtually every discipline from chemistry to physics and materials to more engineering-like disciplines. 

    We are working on a team with Robert Kostecki and Ravi Prasher in Berkeley Lab’s Energy Technologies Area on several different aspects of forward osmosis – the design of the draw solute, system engineering, and the use of abundant natural resources such as solar or geothermal sources to achieve good results here. If successful, we would engage with even more of the Berkeley Lab scientific community to perform techno-economic modeling for project feasibility and analyses of the most appropriate geothermal and solar resources. Berkeley Lab is also a hub for global researchers, and the more global perspective on how to address the unique water challenges of different global communities is necessary for basic science to translate into global results. 

    The Department of Energy has recognized the very significant interdependence between water and energy and has announced it will invest $100 million for R&D in next-generation desalination technologies. We believe forward osmosis has the potential to greatly reduce the energy cost associated with desalinating all kinds of water.

    Q. What advances has Berkeley Lab been able to make in getting forward osmosis closer to a competitive technology? 

    We are working on this problem from a number of angles, from basic science to the technoeconomics. One aspect that has recently seen progress is the development of draw solutions that can be recycled more cost- and energy-effectively. In a study we published earlier this year in ACS Omega, we proposed a binary ion liquid/hydrogel system. We found that this hydrogel allows for an efficient recovery of water from the draw solute/water mixture with enhanced water purity, compared with conventional thermal treating of lower critical solution temperature ionic liquid draw solute/water. Furthermore, hydrogels can be used in a continuous and readily recyclable process to recover water without heating the entire draw solute/water mixture. Our design principles open the door to use low-grade/waste heat or solar energy to regenerate draw agents and potentially reduce energy in the FO process considerably. 

    In another study published recently in Nature Communications Chemistry we used nuclear magnetic resonance spectroscopy to investigate the chemical structures of ionic liquids. One subclass of thermoresponsive ionic liquids have desirable properties that make them suitable as a draw solution for FO. This study will help us design more efficient draw solutions. (Read more here.) 

    As mentioned, forward osmosis is a nascent technology that can deliver substantial crosscutting impact in multiple areas with more investment into the basic science. The ability to use solar and renewable sources of technology to deliver clean water can take desalination “off the grid” and help water distressed communities worldwide. 

    # # # 

    Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://energy.gov/science

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    New Electrolyte Stops Rapid Performance Decline of Next-Generation Lithium Battery

    Researchers at Argonne National Laboratory have designed and tested a new electrolyte composition that could greatly accelerate the adoption of the next generation of lithium-ion batteries.

    Light My Fire: How to Startup Fusion Devices Every Time

    Light My Fire: How to Startup Fusion Devices Every Time

    Researchers have constructed a framework for starting and raising a fusion plasma to temperatures rivaling the sun in hundreds of milliseconds.

    Atomic-level Imaging Could Offer Roadmap to Metals with New Properties

    Atomic-level Imaging Could Offer Roadmap to Metals with New Properties

    A team of researchers at the Georgia Institute of Technology has developed a new process that could help gain new insights into individual high-entropy alloys and help characterize their properties.


    • Filters

    • × Clear Filters

    Department of Energy Announces Private-Public Awards to Advance Fusion Energy Technology

    The U.S. Department of Energy (DOE) announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development. The awards are the first provided through the Innovation Network for Fusion Energy program (INFUSE).

    Denisov Leads High Energy Physics at Brookhaven

    Denisov Leads High Energy Physics at Brookhaven

    Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named Deputy Associate Lab Director for High Energy Physics at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory.

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Zulipiya Shadike, a postdoctoral fellow in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, received a Young Investigator Award from the Battery500 Consortium, a DOE-sponsored consortium led by Pacific Northwest National Laboratory (PNNL) that aims to improve electric vehicle batteries.

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    The American Physical Society (APS) has elected two scientists from Brookhaven National Laboratory as 2019 APS fellows.

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Profile of physicist Stefan Gerhardt who has been elected a 2019 fellow of the American Physical Society.

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    Scientists from DOE's Pacific Northwest National Laboratory, DOE's Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne scientists receive $1.19 million from DOE for quantum research.

    Department of Energy Announces $6.6 Million to Study Dark Matter

    The U.S. Department of Energy (DOE) announced $6.6 million for four new research awards to develop design concepts for dark matter search experiments.

    Department of Energy Office of Science and NNSA Award $3.5 Million for High Energy Density Plasma Research

    The Department of Energy's (DOE) Office of Science and DOE's National Nuclear Security Administration (NNSA) have awarded eight research grants totaling $3.5 million to support work related to High-Energy Density Laboratory Plasmas (HEDLP).

    Department of Energy Announces $21.4 Million for Quantum Information Science Research

    Department of Energy Announces $21.4 Million for Quantum Information Science Research

    The following news release was issued on Aug. 26, 2019 by the U.S. Department of Energy (DOE). It announces funding that DOE has awarded for research in quantum information science related to particle physics and fusion energy sciences. Scientists at DOE's Brookhaven National Laboratory are principal investigators on two of the 21 funded projects.


    • Filters

    • × Clear Filters
    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.

    Even Hard Materials Have Soft Spots

    Even Hard Materials Have Soft Spots

    The Achilles Heel of "metallic glasses" is that while they are strong materials--even stronger than conventional steels--they are also very brittle. The initial failures tend to be localized and catastrophic. This is due to their random amorphous (versus ordered crystalline) atomic structure. Computer simulations revealed that the structure is not completely random, however, and that there are some regions in the structure that are relatively weak. Defects nucleate more easily in these regions, which can lead to failure. This understanding of the mechanical properties has led to a strategy for making the material stronger and less brittle.

    2-D Atoms Do the Twist

    2-D Atoms Do the Twist

    In the study, scientists demonstrated, for the first time, an intrinsically rotating form of motion for the atoms in a crystal. The observations were on collective excitations of a single molecular layer of tungsten diselenide. Whether the rotation is clockwise or counter-clockwise depends on the wave's propagation direction.

    Location, Location, Location... How charge placement can control a self-assembled structure

    Location, Location, Location... How charge placement can control a self-assembled structure

    For years, scientists have formed polymers using the interaction of charges on molecular chains to determine the shape, geometry, and other properties. Now, a team achieved precise and predictable control of molecular chains by positioning charges. Their method leads to particles with reproducible sizes.

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Alloys (metals combining two or more metallic elements) are typically stronger and less susceptible to cracking than pure metals. Yet when alloys are subjected to stress and a harsh chemical environment, the alloy can fail. The reason? Cracks caused by corrosion.

    Simultaneous Clean and Repair

    Simultaneous Clean and Repair

    Scientists have developed a novel and efficient approach to surface cleaning, materials transport, and repair.

    Where Does Salt in the Amazon Air Come From?

    Where Does Salt in the Amazon Air Come From?

    Tiny particles of sodium salt float in the air over the pristine Amazon basin. Why? The only explanation before now has been that winds blow marine particles hundreds of miles inland from the Atlantic Ocean. An international team of scientists used chemical imaging and atmospheric models to prove otherwise.

    Testing the Toughness of Microbial Cell Walls

    Testing the Toughness of Microbial Cell Walls

    Microbial cells contain biological material that can be important for research or industrial use, such as DNA or proteins. Yet, reaching this cellular material can be a challenge.


    Spotlight





    Showing results

    0-4 Of 2215