DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-07-25 17:05:50
    • Article ID: 716428

    Argonne Celebrates Apollo 11 Anniversary and New Moon Rock Study

    • Credit: Argonne National Laboratory

      University of Chicago researchers Steve Sutton (left) and Tony Lanzirotti are part of a team studying Apollo moon rock samples using the Advanced Photon Source at Argonne National Laboratory.

    • Credit: NASA

      Astronaut and Lunar Module pilot Buzz Aldrin is pictured during the Apollo 11 extravehicular activity on the moon. He had just deployed the Early Apollo Scientific Experiments Package. In the foreground is the Passive Seismic Experiment Package; beyond it is the Laser Ranging Retro-Reflector (LR-3). The LR-3 experiment has produced many important measurements that have improved our knowledge of changes of the Earth’s rotation and have been used to test Einstein’s Theory of Relativity. The LR-3, which consists of a series of corner-cube reflectors composed of a special type of mirror that always reflecting an incoming light beam back in the direction from which it came, is the only Apollo experiment that is still returning data from the moon.

    • Credit: NASA

      Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon’s surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man’s first Moon landing and was presented to the Institute for display in the Art and Industries Building.

    • Credit: Tony Lanzirotti/Steve Sutton, University of Chicago

      This image shows an optical microscope image (right) and synchrotron microprobe X-ray fluorescence map (left) of a thin section prepared from a lunar soil sample collected by Neil Armstrong and Buzz Aldrin during the Apollo 11 mission. Numbered sample 10084, this may arguably be the most widely distributed and studied of the Apollo samples collected. The soil is believed to largely represent materials formed by meteorite impact of fine-grained lunar basalts, containing grains and glassy particles formed by melting and fusion of soil particles during impact processes.

    In an epic year for pop culture, 1969, an estimated 400,000 young Americans enjoyed three days of peace and music at the Woodstock Music and Arts Fair in Bethel, New York; PBS and the Pontiac Firebird Trans Am made their debuts; and the struggle for civil rights was taking shape in many forms across the country.

    Yet one event may have captured the hearts and imaginations of more Americans, if not much of the world, than any other — the Apollo 11 moon landing of July 20, estimated to have been watched by some 600 million people worldwide. In addition to its primary mission to successfully land astronauts on the moon and return them safely home, Apollo 11’s science objectives included the recovery of the first lunar surface samples.

    In a little more than three years, five more Apollo moon landings would follow, each with more sophisticated equipment and broader objectives, but each with the same goal of bringing back more material — moon samples in the form of rock and soil specimens.

    Nearly 50 years after the last lunar mission, some of those original materials, which have remained unopened until now, will soon land at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, allowing a select group of researchers an unprecedented look at samples unsullied by Earth’s atmosphere. Unlocking the chemical composition of the samples will provide a clearer understanding of the moon’s origins and determine material resource availability — like water, iron and titanium — for potential habitation on the lunar surface.

    The Spectroscopy Consortium Addressing Redox Acquired by Beads (SCARAB) project was among the nine recently selected by the Apollo Next Generation Sample Analysis (ANGSA) Program at NASA to analyze samples of the specially curated materials.

    A joint effort between researchers at the Planetary Science Institute (PSI), the University of Chicago (UChicago), the University of Tennessee (UT), and the University of Massachusetts in Amherst (UMass), SCARAB plans to study them using the high-energy X-rays produced at Argonne’s Advanced Photon Source (APS), a DOE Office of Science User Facility.

    “The idea is to try to maximize the science return from the Apollo program in preparation for the next suite of missions expected to go there in 2024,” says SCARAB team member Steve Sutton, a UChicago research professor with joint appointments in the Geophysical Sciences Department and the Center for Advanced Radiation Sources, which operates multiple X-ray facilities at the APS.

    Considered the most pristine samples ever made available by NASA, these select materials from Apollo missions 15, 16 and 17 have remained hermetically sealed since their collection, either vacuum sealed on the lunar surface, frozen or exposed only to helium and then sealed.

    “Leave it to NASA to appreciate that they should store samples unopened because 40–50 years down the line there would be new ways to study them that weren’t available back then,” says Tony Lanzirotti, associate research professor at UChicago’s Center for Advanced Radiation Sources and a project member.

    We Have a Go

    As it turns out, NASA was right on the mark.

    “Leave it to NASA to appreciate that they should store samples unopened because 40-50 years down the line there would be new ways to study them that weren’t available back then.” — Tony Lanzirotti, associate research professor at UChicago’s Center for Advanced Radiation Sources and SCARAB project member

    Facilities like the APS — sources of ultra-bright, high-energy X-ray beams — came online in the mid-1990s, exponentially enabling greater insight into a host of materials, including the lunar samples.

    “The improvement in light sources like the APS and our ability to characterize samples like these, has increased tremendously over the last 40 to 50 years,” says Stephen Streiffer, director of the APS and associate laboratory director for Argonne’s Photon Sciences directorate. “And they have improved at a much faster rate than computer technology, which we think of as improving at a phenomenal rate.

    “That the APS can contribute to something that captures the imagination, like the composition of moon rocks, speaks to the advanced capabilities of facilities like the APS and the breadth of discoveries made by researchers using it.”

    Lanzirotti and Sutton have been using the APS to delineate the concentration of elements as well as the oxidation states within previously available lunar soils, expanding understanding of the chemistry and the oxygen content in the environments from which the samples originated.

    As members of the collaborative access team (CAT) GeoSoilEnviroCARS (GSECARS) at the APS, they now hope to utilize beamline 13-ID-E to study volcanic glass beads believed to be preserved in the soil samples NASA will provide the SCARAB team in the coming months.

    One of the big questions they want to address relates to the volatile composition of the moon when it was forming. The discovery of oxidation state gradients in lunar volcanic beads by collaborators Darby Dyar of PSI and Molly McCanta at UT are driving the study.

    “The oxidation state gradients on the beads are telling us what the environment was like when they were formed,” notes Sutton. “They were produced by small volcanoes that were spitting out magma which was solidifying in space. But their surfaces were exposed to whatever gases were present and recorded on the beads over three billion years ago.”

    The group uses microprobe X-ray fluorescence to help determine the oxidation states of specific elements and their distributions throughout the material. And that chemical snapshot gives a pretty accurate picture of the oxygen content in the ancient lunar magma.

    “And knowing what the oxygen content was tells you what minerals might be stable under those conditions,” explains Lanzirotti. “So, if there’s a little oxygen, iron will be metal. If there’s a lot, iron will be found in a very oxidized form, as in rust,”

    Not only is the information important for understanding the moon’s origins — thought to be the collision of a Mars-sized object with the early Earth — but knowing what mineral resources are available and their characteristics could potentially inform the construction of a station on the moon’s surface.

    Argonne’s Lunar History

    The idea of a moon base is not new or altogether far-fetched. Argonne’s interest in lunar studies began well before Apollo 11, and includes, more notably, the publication of Argonne Bulletin 6261, “A Lunar Power Plant.” Produced by scientists from Argonne’s Reactor Engineering Division, the group drafted plans for a nuclear power plant to support the electrical energy needs of a lunar expedition.

    The power plant never made it off the ground, but Argonne’s earliest successful endeavors to understand the chemistry and evolution of Earth’s only satellite appear to have begun in earnest in the mid-1960s.

    A collaboration between Argonne, the University of Chicago and NASA’s Jet Propulsion Laboratory produced an alpha scattering instrument for chemical analysis of lunar material, the results aimed at detecting safe landing sites for the Apollo missions. The technique was later used to analyze material brought back on Apollo 11.

    From those very first lunar landings, Argonne scientists worked on a variety of lunar research, from the effects of cosmic rays on the moon’s surface to determining mercury contamination levels in potential lunar water resources.

    In particular, researchers Stanka Jovanovic and George W. Reed Jr., of Argonne’s early Chemistry Division, were heavily involved in trace element analysis of samples from many of the landings, producing dozens of papers well into the 1980s.

    With the advent of X-ray light sources like the APS, the mantle for the study of lunar elements seems to have shifted. Sutton and colleagues from SCARAB have been publishing on the oxidation states of various elements since the early 1990s, often analyzing epoxy-resin-embedded sections of some sample sliced to micron thickness by curation scientists at NASA in the early 1970s.

    Now, a batch of pristine samples are within reach.

    Streiffer sums up the excitement and significance of studying these samples at the APS and those first steps on the moon, 50 years later.

    “This ties back directly to my childhood,” he says. “The moon landings are my first memories of the way in which science and technology could break the bounds to which mankind has traditionally been subject.

    “It is the seminal event for people of my generation in terms of what it meant to be a scientist. So now it’s amazing to think that I’m sitting here at the APS and we’re actually going to get pristine lunar material and be able to study it.”

    Funding Acknowledgments

    The APS is funded by the Scientific User Facilities Division of Basic Energy Sciences in DOE’s Office of Science. The ANGSA program is funded by NASA; The University of Chicago will subcontract through the lead institution, Planetary Science Institute. GSECARS is supported by a grant from NSF-Earth Sciences with additional development grants from NASA-LARS, DOE-Geosciences and NSF-Geophysics.

    About the Advanced Photon Source
    This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

    Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

    The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    AI for Plant Breeding in an Ever-Changing Climate

    AI for Plant Breeding in an Ever-Changing Climate

    In this Q&A, Oak Ridge National Laboratory's Dan Jacobson talks about his team's work on a genomic selection algorithm, his vision for the future of environmental genomics, and the space where simulation meets AI.

    A New Parallel Strategy for Tackling Turbulence on Summit

    A New Parallel Strategy for Tackling Turbulence on Summit

    A team at Georgia Tech created a new turbulence algorithm optimized for the Summit supercomputer. It reached a performance of less than 15 seconds of wall-clock time per time step for more than 6 trillion grid points--a new world record surpassing the prior state of the art in the field for the size of the problem.

    Modeling Every Building in America Starts with Chattanooga

    Modeling Every Building in America Starts with Chattanooga

    An ORNL team used the Titan supercomputer to model every building serviced by the Electric Power Board of Chattanooga--all 178,368 of them--and discovered that EPB could potentially save $11-$35 million per year by adjusting electricity usage during peak critical times.

    Climate Change Expected to Shift Location of East Asian Monsoons

    Climate Change Expected to Shift Location of East Asian Monsoons

    More than a billion people in Asia depend on seasonal monsoons for their water needs. The Asian monsoon is closely linked to a planetary-scale tropical air flow which, according to a new study by Lawrence Berkeley National Laboratory, will most likely shift geographically as the climate continues to warm, resulting in less rainfall in certain regions.

    Nuclear warheads? This robot can find them

    Nuclear warheads? This robot can find them

    PPPL and Princeton University are developing a unique neutron-detector robot for arms control and nuclear security purposes. The robot recently passed a key neutron-detection test.

    Deep neural networks speed up weather and climate models

    Deep neural networks speed up weather and climate models

    A team of environmental and computation scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory are collaborating to use deep neural networks, a type of machine learning, to replace the parameterizations of certain physical schemes in the Weather Research and Forecasting Model, an extremely comprehensive model that simulates the evolution of many aspects of the physical world around us.

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    A new approach developed by PNNL scientists improves the accuracy of patient diagnosis up to 20 percent when compared to other embedding approaches.

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Experiments at Berkeley Lab are casting a new light on Egyptian soil and ancient mummified bone samples that could provide a richer understanding of daily life and environmental conditions thousands of years ago. In a two-monthslong research effort that concluded in late August, two researchers from Cairo University in Egypt brought 32 bone samples and two soil samples to study using X-ray and infrared light-based techniques at the Lab's Advanced Light Source.

    Etalumis 'Reverses' Simulations to Reveal New Science

    Etalumis 'Reverses' Simulations to Reveal New Science

    A multinational collaboration using computing resources at the National Energy Research Scientific Computing Center has developed the first probabilistic programming framework capable of controlling existing simulators and running at large-scale on HPC platforms.

    Deep Learning Expands Study of Nuclear Waste Remediation

    Deep Learning Expands Study of Nuclear Waste Remediation

    A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation


    • Filters

    • × Clear Filters
    ORNL to host 13 teams for DOE CyberForce Competition

    ORNL to host 13 teams for DOE CyberForce Competition

    Oak Ridge National Laboratory will give college students the chance to practice cybersecurity skills in a real-world setting as a host of the Department of Energy's fifth collegiate CyberForce Competition on Nov. 16.

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart has been named to Crain's Chicago Business's "40 Under 40" list, which recognizes young leaders in a variety of fields.

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Argonne National Laboratory has won a regional Federal Green Challenge award for conserving resources and saving taxpayers' money.

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    The Princeton Plasma Physics Laboratory receives funding from the U.S. Department of Energy for two projects to encourage entrepreneurship and mentor and encourage potential entrepreneurs.

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven's Superconducting Magnet Division will partner with industry to develop and characterize superconducting power cables.

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    Going on its fourth year, DOE's CyberForce Competition(tm) on Nov. 15-16 will give teams of cybersecurity students and professionals the opportunity to compete and refine their skills in real-time at 10 national laboratories across the U.S.

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen's work on how massive objects bend light from distant galaxies is aimed at unraveling some of the greatest mysteries of modern physics: What is dark matter? What is dark energy, and how is it accelerating the expansion of the universe?

    DOE Announces FY 2020 Small Business Innovation Research Funding Opportunity

    The Department of Energy (DOE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs issued its FY 2020 Phase II Release 1 Funding Opportunity Announcement (FOA) with approximately $97 million in available funding.

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    A joint effort by the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago has led to a prestigious R&D 100 Award and is expected to bring an innovation closer to market so it ultimately can be used in many industrial applications.

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    The U.S. Department of Energy announced that it has awarded scientists at its Fermi National Accelerator Laboratory funding to boost research on dark matter, the mysterious substance that makes up an astounding 85% of the matter in the universe.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight





    Showing results

    0-4 Of 2215