DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-03-28 16:45:09
    • Article ID: 710419

    Ice Sheet Modeling Probes Antarctic Vulnerabilities

    BISICLES tool uses NERSC to explore how changes in Antarctic Ice Sheet could contribute to sea level rise

    • The BISICLES ice sheet modeling tool was featured on the February 2019 cover of Geophysical Research Letters.

    • The BISICLES ice sheet model gives researchers insight into potential ice-shelf loss in each of the Antarctic Ice Sheet's 14 sectors.

    The biggest uncertainty in end-of-the-century sea level rise comes from the Antarctic Ice Sheet (AIS), the miles-thick, continent-sized polar ice mass that covers the South Pole. However, current earth system models struggle to account for events unfolding in the Antarctic region—the coupling between the evolving earth system and the ice sheet is complex and difficult to fully implement in models.

    To address this, a team of scientists from Lawrence Berkeley National Laboratory (Berkeley Lab), Swansea University (UK), and the University of Bristol (UK) collaborated to create an ice sheet modeling tool that uses high performance computing resources at the National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab to systematically examine where the AIS is vulnerable and the resulting potential for large contributions to sea level rise.

    The modeling tool — the BISICLES ice sheet model — has enabled the first fully resolved, systematic study of millennial-scale ice sheet response to regional ice shelf collapse (Millennial-scale Vulnerability of the Antarctic Ice Sheet to Regional Ice Shelf Collapse). While high‐resolution projections have been performed for localized Antarctic regions, full‐continent simulations have until now been limited to low‐resolution models. Key to the accuracy of the BISICLES tool’s ability to quantify the vulnerability of the entire present‐day AIS is adaptive mesh refinement (AMR). AMR dynamically places high resolution specifically where the ice sheet is changing most rapidly. Using AMR to locally deploy fine resolution allows researchers to focus on the small regions that control the overall evolution of the AIS, like fast-moving ice streams, retreating edges and the point at which ice sheets transition from grounded ice to floating ice shelves (called grounding lines) — features that migrate over continental scales.

    To get the right answer, we need to resolve the areas where there’s the most activity at a very high (sub-kilometer) resolution, but we can’t resolve all of Antarctica at that level of resolution because of the huge computational expense that would require,” said Dan Martin, a computational scientist and group leader of the Applied Numerical Algorithms Group in the Lab’s Computational Research Division and a co-developer of BISICLES. “With AMR, we can deploy high resolution only where we need it, so as the ice sheet evolves, you can automatically change where that resolution goes.” AMR is a technique that has been developed at Berkeley Lab over the last 25 years and used to enable efficient and accurate simulations across a wide range of applications. BISICLES is implemented in Chombo, one of the resulting software frameworks.

    Antarctic ice flows in relatively fast-moving ice streams from the interior to the ocean, where it is carried into enormous floating ice shelves that push back on their feeder ice streams, buttressing them and slowing their flow. Scientists have observed that the weakening or loss of these ice shelves can result in faster-moving ice, which causes thinning and retreat as more ice is delivered to the ocean from the land. To better understand where the AIS is vulnerable to ice-shelf loss, the researchers divided it into 14 sectors, corresponding to the large-scale Antarctic drainage basins. They then applied extreme thinning rates to each sector's floating ice shelves in turn while running the high-resolution BISICLES ice flow model 1,000 years into the future for each case. The greatest vulnerability came from attacking any of the three ice shelves connected to the part of West Antarctica, where much of the ice sits on bedrock that lies below sea level. Each of those dramatic responses contributed more than 2m to global sea levels after 1000 years. The second level of response came from four other sectors, each with a contribution between 0.5-1m. The remaining sectors produced little to no contribution.

    BISICLES has been in development since 2009, and is currently part of the DOE SCIDAC-funded ProSPect application partnership, which aims to improve sea-level projections by bringing a wide range of DOE expertise to bear. Beyond the DOE, researchers all over the world are using BISICLES in their modeling efforts.

    “What allowed us to accomplish this work, which entailed an unprecedented 35,000 years of high-resolution full-continent simulations, is the combination of AMR and access to NERSC,” says Martin. “While each of our NERSC runs is not that big in supercomputing terms, each simulation would still have taken 10 years on a desktop computer—we’ve used more than a million CPU hours on NERSC’s Edison supercomputer.”

    NERSC is a DOE Office of Science user facility.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

    Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

    Scientists at PPPL have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Researchers at the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing.

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Surprise discovery shows that turbulence at the edge of the plasma may facilitate production of fusion energy.

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data


    • Filters

    • × Clear Filters
    Jefferson Lab Establishes New Fellowships in Nuclear Physics and Accelerator Science

    Jefferson Lab Establishes New Fellowships in Nuclear Physics and Accelerator Science

    The Department of Energy's Thomas Jefferson National Accelerator Facility is fostering innovation and growth in nuclear and accelerator physics by expanding its prestigious fellowship program for early career physicists. The lab is doubling the number of Nathan Isgur fellowships and is establishing a new fellowship in honor of Jefferson Lab's first director, Hermann A. Grunder.

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak, director of Lawrence Berkeley National Laboratory's Nuclear Science Division since 2015, has been named a 2019 Distinguished Scientist Fellow by the U.S. Department of Energy's Office of Science.

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have garnered two out of five "Distinguished Scientists Fellow" awards announced today by the DOE's Office of Science. Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and Jose Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields.

    Department of Energy Announces Private-Public Awards to Advance Fusion Energy Technology

    The U.S. Department of Energy (DOE) announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development. The awards are the first provided through the Innovation Network for Fusion Energy program (INFUSE).

    Denisov Leads High Energy Physics at Brookhaven

    Denisov Leads High Energy Physics at Brookhaven

    Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named Deputy Associate Lab Director for High Energy Physics at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory.

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Zulipiya Shadike, a postdoctoral fellow in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, received a Young Investigator Award from the Battery500 Consortium, a DOE-sponsored consortium led by Pacific Northwest National Laboratory (PNNL) that aims to improve electric vehicle batteries.

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    The American Physical Society (APS) has elected two scientists from Brookhaven National Laboratory as 2019 APS fellows.

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Profile of physicist Stefan Gerhardt who has been elected a 2019 fellow of the American Physical Society.

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    Scientists from DOE's Pacific Northwest National Laboratory, DOE's Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne scientists receive $1.19 million from DOE for quantum research.


    • Filters

    • × Clear Filters
    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.

    Even Hard Materials Have Soft Spots

    Even Hard Materials Have Soft Spots

    The Achilles Heel of "metallic glasses" is that while they are strong materials--even stronger than conventional steels--they are also very brittle. The initial failures tend to be localized and catastrophic. This is due to their random amorphous (versus ordered crystalline) atomic structure. Computer simulations revealed that the structure is not completely random, however, and that there are some regions in the structure that are relatively weak. Defects nucleate more easily in these regions, which can lead to failure. This understanding of the mechanical properties has led to a strategy for making the material stronger and less brittle.

    2-D Atoms Do the Twist

    2-D Atoms Do the Twist

    In the study, scientists demonstrated, for the first time, an intrinsically rotating form of motion for the atoms in a crystal. The observations were on collective excitations of a single molecular layer of tungsten diselenide. Whether the rotation is clockwise or counter-clockwise depends on the wave's propagation direction.

    Location, Location, Location... How charge placement can control a self-assembled structure

    Location, Location, Location... How charge placement can control a self-assembled structure

    For years, scientists have formed polymers using the interaction of charges on molecular chains to determine the shape, geometry, and other properties. Now, a team achieved precise and predictable control of molecular chains by positioning charges. Their method leads to particles with reproducible sizes.

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Alloys (metals combining two or more metallic elements) are typically stronger and less susceptible to cracking than pure metals. Yet when alloys are subjected to stress and a harsh chemical environment, the alloy can fail. The reason? Cracks caused by corrosion.

    Simultaneous Clean and Repair

    Simultaneous Clean and Repair

    Scientists have developed a novel and efficient approach to surface cleaning, materials transport, and repair.


    Spotlight





    Showing results

    0-4 Of 2215