DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-10-10 11:30:17
    • Article ID: 701944

    How Drought and Other Extremes Impact Water Pollution

    Q&A with Berkeley Lab hydrological science expert Bhavna Arora, who explains how unseasonably warm weather and drought can affect water quality

    • Credit: Marilyn Chung / Berkeley Lab

      Bhavna Arora (right) and former intern Madison Burrus discuss the computer simulations they are creating using data about river discharge, precipitation, and snowpack collected from the East River catchment site near Crested Butte, CO.

    • Credit: Roy Kaltschmidt / Berkeley Lab

      As part of the Watershed Function Scientific Focus Area (SFA) Berkeley Lab researchers are studying how disturbances to mountainous watersheds impact the downstream delivery of water, nutrients, carbon, and metals, at the East River basin in Colorado.

    • Credit: Photo Courtesy of USDA NRCS

      The Natural Resources Conservation Service, an agency of the USDA, monitors snowpack and related climatic data at more than 700 sites in 11 western states. This snow map shows how snow depth in January 2018 across the West compared tomedian snow depth values recorded during January from 1981 to 2010 at these sites.

     —By Christina Procopiou

    One in 10 Americans depends on the Colorado River for bathing and drinking. Last fall’s record-high temperatures reduced Colorado snowpack in winter 2018 to 66 percent of normal, sparking concern over water shortages downstream and leaving water managers fearful of a repeat. 

    Diminishing snowpack isn’t all that affects water reserves. At many sites across the West where the federal Natural Resources Conservation Service measures the amount of water contained within snow, this snow-water equivalent was less than half of median values from 1981 to 2010. At the same time, snow is melting near the Colorado River’s headwaters almost a month earlier than it did 25 years ago. This earlier melt alone has caused shifts in plant communities that function to absorb nutrients, process pollutants, and filter sediment as water moves downstream – increasing the odds that water quality, not just water supply, will be put at risk by a warming atmosphere.

    Hydrological science expert and geochemist Bhavna Arora is part of a team at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) studying the changes to these plant communities in a research area along the East River catchment near the Upper Colorado River headwaters. The team’s studies, part of the Watershed Function Scientific Focus Area (SFA) program, are useful for predicting how disturbances to mountainous watersheds – like floods, drought, changing snowpack and earlier snowmelt – impact the downstream delivery of water, nutrients, carbon, and metals.

    Q. Does anything concern you about what your team is observing at the East River watershed?

    A. Snow is melting an average of 26 days earlier than it did 25 years ago – a phenomenon that’s forced a dramatic shift in plant communities in and around the Upper Colorado River. When snow melts far sooner than expected, nitrates produced naturally beneath snow can be released much earlier in the watershed. Regional plants that historically functioned synchronously within the ecosystem to absorb nutrients from water within snowmelt have been replaced or risk being replaced by more drought-resistant plants that may not be so adept at taking up nitrogen.

    At the East River, Colorado, catchment site that is the project test bed, a community of deep-rooted shrubs has replaced grasses and wildflowers, which rapidly take up nitrogen and other elements from water within snowmelt. It’s not yet clear if these new plants can quickly assume the roles of their predecessors and prevent nitrates or other elements from entering the river and traveling downstream.

    In just under two short years since our team began studying there, we’ve witnessed earlier snowmelt accompanied by the diminished snowpack that has become so familiar across entire regions of the mountainous West. We wanted to quantify the influence of changes in snowmelt timing and snowpack depth on nitrogen fluxes and plant phenology at our study site.

    We’re using remote sensing and wells that penetrate deep into the bedrock to continuously monitor vegetation, seasonal soil temperatures, water availability, and chemistry throughout the soil and subsurface at the East River site. Our observations and computer simulations show that an earlier and larger nitrate peak occurs with early snowmelt in comparison to a normal snowmelt scenario. We also found that differences in snowpack depths change the under-snow nutrient buffer and ammonia concentration. In both scenarios of early snowmelt and decreased snowpack, shrubs have replaced grasses and wildflowers as the dominant vegetation.

    Although much more study needs to be done, this is an excellent example of the complexity of nature.

    Q: Do these observations spell trouble for the water that ends up as irrigation water for crops or as drinking water for residents downstream?

    Headwaters catchments like the East River represent a section of river that has not been impacted by land use changes such as agriculture. What’s troubling is not the concentrations we’re seeing at these pristine research sites but what that means for water as it moves downstream. The peaks in nitrates after a long, extended drought are particularly worrisome because the risks of excess nitrates to human health are well-known and worthy of our attention. Intense rainfall like we’ve experienced leads to excess nitrates being leached into the river, which could put downstream water supplies at risk.

    Without investigating many more sites over multiple years, it’s far too soon to say how increased nitrate concentration in headwater catchments could impact runoff as it moves downstream. But it’s reasonable to believe that it could. Take agricultural regions, for example. Historically we’ve added nitrogen to farmland soils as fertilizer. As a result, there’s been a build-up of groundwater nitrates and nitrous oxide emissions to the air across major agricultural regions. So, while excess nitrates in the water near our remote research site might not pose a significant threat to human health, we can’t be sure that the same is true downstream in waters in and around lands that are intensively used.

    Q. We started out discussing the record drought and heat in Colorado and across the Western U.S. If summer temperatures and lack of precipitation are any indication, it seems unlikely that we can expect fall and winter to be more in keeping with the historic norm. Are these erratic patterns of concern?

    A. Snowmelt timing is critical to plant growth and growing season duration, setting the starting point for when plants emerge from their winter dormancy and begin to grow. The exact timing of snowmelt is also critical to our work as it represents one of the most important and dynamic times of the year – a period when there’s a lot to study and understand.

    Geochemical modelers like me benefit from having access to quality data about snow patterns, temperature, humidity, and other factors likely to cause changes within mountainous watersheds. For decades, hydrologists could time their field observations according to the relatively predictable timing of snowmelt and depth of snowpack based on historic patterns. Relative consistency in precipitation and temperature also allows us to predict future watershed response to these factors based on previous trends, in addition to current observations. 

    Huge fluctuations in snow accumulation and melt have required us to develop a network of sensors that autonomously measure soil temperature and soil water and continuously capture video of the surface of the snow. In this way we can “observe” the start of snowmelt through changes in water and temperature and predict the likely date range of snow-free conditions a week or two in advance. Then we mobilize our teams and equipment and  get out there!

    With shifts in plant communities due to early snowmelt, we don't yet know how well those new plant communities will work together to absorb nitrogen and other nutrients. Since those new plant communities may take years to become established, we need to use computer models to predict what might happen. With the shift in snowmelt timing from historic trends – and in flux even from year to year, it becomes even more difficult to predict what changes in temperature and precipitation patterns will mean for the water supply in two years, much less 10 or 50 years. 

    Our best hope is to build the best computer models possible that can numerically explore all of these factors (snowmelt timing, drought, monsoons, plant species, etc.) combined, and test those models with data from the field. In this way we hope to predict the future quantity and quality of our water as it flows downstream and impacts users and ecosystems far removed from its origin in the Upper Colorado River.

    # # # 

    Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    AI for Plant Breeding in an Ever-Changing Climate

    AI for Plant Breeding in an Ever-Changing Climate

    In this Q&A, Oak Ridge National Laboratory's Dan Jacobson talks about his team's work on a genomic selection algorithm, his vision for the future of environmental genomics, and the space where simulation meets AI.

    A New Parallel Strategy for Tackling Turbulence on Summit

    A New Parallel Strategy for Tackling Turbulence on Summit

    A team at Georgia Tech created a new turbulence algorithm optimized for the Summit supercomputer. It reached a performance of less than 15 seconds of wall-clock time per time step for more than 6 trillion grid points--a new world record surpassing the prior state of the art in the field for the size of the problem.

    Modeling Every Building in America Starts with Chattanooga

    Modeling Every Building in America Starts with Chattanooga

    An ORNL team used the Titan supercomputer to model every building serviced by the Electric Power Board of Chattanooga--all 178,368 of them--and discovered that EPB could potentially save $11-$35 million per year by adjusting electricity usage during peak critical times.

    Climate Change Expected to Shift Location of East Asian Monsoons

    Climate Change Expected to Shift Location of East Asian Monsoons

    More than a billion people in Asia depend on seasonal monsoons for their water needs. The Asian monsoon is closely linked to a planetary-scale tropical air flow which, according to a new study by Lawrence Berkeley National Laboratory, will most likely shift geographically as the climate continues to warm, resulting in less rainfall in certain regions.

    Nuclear warheads? This robot can find them

    Nuclear warheads? This robot can find them

    PPPL and Princeton University are developing a unique neutron-detector robot for arms control and nuclear security purposes. The robot recently passed a key neutron-detection test.

    Deep neural networks speed up weather and climate models

    Deep neural networks speed up weather and climate models

    A team of environmental and computation scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory are collaborating to use deep neural networks, a type of machine learning, to replace the parameterizations of certain physical schemes in the Weather Research and Forecasting Model, an extremely comprehensive model that simulates the evolution of many aspects of the physical world around us.

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    A new approach developed by PNNL scientists improves the accuracy of patient diagnosis up to 20 percent when compared to other embedding approaches.

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Experiments at Berkeley Lab are casting a new light on Egyptian soil and ancient mummified bone samples that could provide a richer understanding of daily life and environmental conditions thousands of years ago. In a two-monthslong research effort that concluded in late August, two researchers from Cairo University in Egypt brought 32 bone samples and two soil samples to study using X-ray and infrared light-based techniques at the Lab's Advanced Light Source.

    Etalumis 'Reverses' Simulations to Reveal New Science

    Etalumis 'Reverses' Simulations to Reveal New Science

    A multinational collaboration using computing resources at the National Energy Research Scientific Computing Center has developed the first probabilistic programming framework capable of controlling existing simulators and running at large-scale on HPC platforms.

    Deep Learning Expands Study of Nuclear Waste Remediation

    Deep Learning Expands Study of Nuclear Waste Remediation

    A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation


    • Filters

    • × Clear Filters
    ASU solar awards eclipse other universities in latest round of DOE funding

    ASU solar awards eclipse other universities in latest round of DOE funding

    ASU receives $9.8 million in Solar Energy Technologies Office Awards.

    DOE to Provide $10 Million for New Research into Ecosystem Processes

    The U.S. Department of Energy (DOE) announced a plan to provide $10 million for new observational and experimental studies aimed at improving the accuracy of today's Earth system models. Research will focus on three separate types of environments--terrestrial, watershed, and subsurface--where current models fall short of providing fully accurate representation.

    ORNL to host 13 teams for DOE CyberForce Competition

    ORNL to host 13 teams for DOE CyberForce Competition

    Oak Ridge National Laboratory will give college students the chance to practice cybersecurity skills in a real-world setting as a host of the Department of Energy's fifth collegiate CyberForce Competition on Nov. 16.

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart has been named to Crain's Chicago Business's "40 Under 40" list, which recognizes young leaders in a variety of fields.

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Argonne National Laboratory has won a regional Federal Green Challenge award for conserving resources and saving taxpayers' money.

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    The Princeton Plasma Physics Laboratory receives funding from the U.S. Department of Energy for two projects to encourage entrepreneurship and mentor and encourage potential entrepreneurs.

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven's Superconducting Magnet Division will partner with industry to develop and characterize superconducting power cables.

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    Going on its fourth year, DOE's CyberForce Competition(tm) on Nov. 15-16 will give teams of cybersecurity students and professionals the opportunity to compete and refine their skills in real-time at 10 national laboratories across the U.S.

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen's work on how massive objects bend light from distant galaxies is aimed at unraveling some of the greatest mysteries of modern physics: What is dark matter? What is dark energy, and how is it accelerating the expansion of the universe?

    DOE Announces FY 2020 Small Business Innovation Research Funding Opportunity

    The Department of Energy (DOE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs issued its FY 2020 Phase II Release 1 Funding Opportunity Announcement (FOA) with approximately $97 million in available funding.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight





    Showing results

    0-4 Of 2215