Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-08-17 13:05:24
  • Article ID: 679719

Scientists Create 'Diamond Rain' That Forms in the Interior of Icy Giant Planets

SLAC's X-ray laser and Matter in Extreme Conditions instrument allow researchers to examine the exotic precipitation in real-time as it materializes in the laboratory.

  • Credit: Greg Stewart/SLAC National Accelerator Laboratory

    A cutaway shows the interior of Neptune (left). In an experiment conducted at the Linac Coherent Light Source, the team studied a plastic simulating compounds formed from methane—a molecule with just one carbon bound to four hydrogen atoms that causes the distinct blue cast of Neptune. Methane forms hydrocarbon (hydrogen and carbon) chains that respond to high pressure and temperature to form “diamond rain” in the interiors of icy giant planets like Neptune. The scientists were able to recreate similar conditions using high-powered optical lasers and watch the small diamonds form in real-time with X-rays.

  • Credit: SLAC National Accelerator Laboratory

    The Matter in Extreme Conditions instrument at SLAC gives scientists the tools to investigate the extremely hot, dense matter at the centers of stars and giant planets. These experiments could help researchers design new materials with enhanced properties and recreate the nuclear fusion process that powers the sun.

Menlo Park, Calif. — In an experiment designed to mimic the conditions deep inside the icy giant planets of our solar system, scientists were able to observe “diamond rain” for the first time as it formed in high-pressure conditions. Extremely high pressure squeezes hydrogen and carbon found in the interior of these planets to form solid diamonds that sink slowly down further into the interior.

The glittering precipitation has long been hypothesized to arise more than 5,000 miles below the surface of Uranus and Neptune, created from commonly found mixtures of just hydrogen and carbon. The interiors of these planets are similar—both contain solid cores surrounded by a dense slush of different ices. With the icy planets in our solar system, “ice” refers to hydrogen molecules connected to lighter elements, such as carbon, oxygen and/or nitrogen.

Researchers simulated the environment found inside these planets by creating shock waves in plastic with an intense optical laser at the Matter in Extreme Conditions (MEC) instrument at SLAC National Accelerator Laboratory’s X-ray free-electron laser, the Linac Coherent Light Source (LCLS). SLAC is one of 10 Department of Energy (DOE) Office of Science laboratories.

In the experiment, they were able to see that nearly every carbon atom of the original plastic was incorporated into small diamond structures up to a few nanometers wide. On Uranus and Neptune, the study authors predict that diamonds would become much larger, maybe millions of carats in weight. Researchers also think it’s possible that over thousands of years, the diamonds slowly sink through the planets’ ice layers and assemble into a thick layer around the core.

The research was published in Nature Astronomy on August 21.

“Previously, researchers could only assume that the diamonds had formed,” said Dominik Kraus, scientist at Helmholtz Zentrum Dresden-Rossendorf and lead author on the publication. “When I saw the results of this latest experiment, it was one of the best moments of my scientific career.”

Earlier experiments that attempted to recreate diamond rain in similar conditions were not able to capture measurements in real time, due to the fact that currently we can create these extreme conditions under which tiny diamonds form only for very brief time in the laboratory. The high-energy optical lasers at MEC combined with LCLS’s X-ray pulses—which last just femtoseconds, or quadrillionths of a second—allowed the scientists to directly measure the chemical reaction.

Other prior experiments also saw hints of carbon forming graphite or diamond at lower pressures than the ones created in this experiment, but with other materials introduced and altering the reactions.

The results presented in this experiment is the first unambiguous observation of high-pressure diamond formation from mixtures and agree with theoretical predictions about the conditions under which such precipitation can form and will provide scientists with better information to describe and classify other worlds.

Turning Plastic Into Diamond

In the experiment, plastic simulates compounds formed from methane—a molecule with just one carbon bound to four hydrogen atoms that causes the distinct blue cast of Neptune.

The team studied a plastic material, polystyrene, that is made from a mixture of hydrogen and carbon, key components of these planets’ overall chemical makeup.

In the intermediate layers of icy giant planets, methane forms hydrocarbon (hydrogen and carbon) chains that were long hypothesized to respond to high pressure and temperature in deeper layers and form the sparkling precipitation.

The researchers used high-powered optical laser to create pairs of shock waves in the plastic with the correct combination of temperature and pressure. The first shock is smaller and slower and overtaken by the stronger second shock. When the shock waves overlap, that’s the moment the pressure peaks and when most of the diamonds form, Kraus said.

During those moments, the team probed the reaction with pulses of X-rays from LCLS that last just 50 femtoseconds. This allowed them to see the small diamonds that form in fractions of a second with a technique called femtosecond X-ray diffraction. The X-ray snapshots provide information about the size of the diamonds and the details of the chemical reaction as it occurs.

“For this experiment, we had LCLS, the brightest X-ray source in the world,” said Siegfried Glenzer, professor of photon science at SLAC and a co-author of the paper. “You need these intense, fast pulses of X-rays to unambiguously see the structure of these diamonds, because they are only formed in the laboratory for such a very short time.”

Nanodiamonds at Work

When astronomers observe exoplanets outside our solar system, they are able to measure two primary traits—the mass, which is measured by the wobble of stars, and radius, observed from the shadow when the planet passes in front of a star. The relationship between the two is used to classify a planet and help determine whether it may be composed of heavier or lighter elements.

“With planets, the relationship between mass and radius can tell scientists quite a bit about the chemistry,” Kraus said. “And the chemistry that happens in the interior can provide additional information about some of the defining features of the planet. 

Information from studies like this one about how elements mix and clump together under pressure in the interior of a given planet can change the way scientists calculate the relationship between mass and radius, allowing scientists to better model and classify individual planets. The falling “diamond rain” also could be an additional source of energy, generating heat while sinking towards the core.

“We can’t go inside the planets and look at them, so these laboratory experiments complement satellite and telescope observations,” Kraus said.

The researchers also plan to apply the same methods to look at other processes that occur in the interiors of planets.

In addition to the insights they give into planetary science, nanodiamonds made on Earth could potentially be harvested for commercial purposes – uses that span medicine, scientific equipment and electronics. Currently, nanodiamonds are commercially produced from explosives; laser production may offer a cleaner and more easily controlled method.

Research that compresses matter, like this study, also helps scientists understand and improve fusion experiments where forms of hydrogen combine to form helium to generate vast amounts of energy. This is the process that fuels the sun and other stars but has yet to be realized in a controlled way for power plants on Earth. 

In some fusion experiments, a fuel of two different forms of hydrogen is surrounded by a plastic layer that reaches conditions similar to the interior of planets during a short-lived compression stage. The LCLS experiment on plastic now suggests that chemistry may play an important role in this stage.

“Simulations don’t really capture what we’re observing in this field,” Glenzer said. “Our study and others provide evidence that matter clumping in these types of high-pressure conditions is a force to be reckoned with.”

The research collaboration includes scientists from Helmholtz-Zentrum Dresden-Rossendorf in Germany, University of California-Berkeley, Lawrence Livermore National Laboratory, Lawrence Berkeley National Laboratory, GSI Helmholtz Centre for Heavy Ion Research in Germany, Osaka University in Japan, Technical University of Darmstadt in Germany, European XFEL, University of Michigan, University of Warwick in the United Kingdom and SLAC.

The research was supported by DOE’s Office of Science and the National Nuclear Security Administration.  LCLS is a DOE Office of Science User Facility.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Strain-Free Epitaxy of Germanium Film on Mica

Germanium was the material of choice in the early history of electronic devices, and due to its high charge carrier mobility, it's making a comeback. It's generally grown on expensive single-crystal substrates, adding another challenge to making it sustainably viable for most applications. To address this aspect, researchers demonstrate an epitaxy method that incorporates van der Waals' forces to grow germanium on mica. They discuss their work in the Journal of Applied Physics.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

Detailed View of Immune Proteins Could Lead to New Pathogen-Defense Strategies

Biologists at Berkeley Lab and UC Berkeley used cryo-EM to resolve the structure of a ring of proteins used by the immune system to summon support when under attack, providing new insight into potential strategies for protection from pathogens. The researchers captured the high-resolution image of a protein ring, called an inflammasome, as it was bound to flagellin, a protein from the whiplike tail used by bacteria to propel themselves forward.

Unlocking the Secrets of Ebola

Scientists have identified a set of biomarkers that indicate which patients infected with the Ebola virus are most at risk of dying from the disease. The results come from one of the most in-depth studies ever of blood samples from patients with Ebola.

Scientists Make First Observations of How a Meteor-Like Shock Turns Silica Into Glass

Studies at the Department of Energy's SLAC National Accelerator Laboratory have made the first real-time observations of how silica - an abundant material in the Earth's crust - easily transforms into a dense glass when hit with a massive shock wave like one generated from a meteor impact.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.

Stretching to Perfection of 2-D Semiconductors

Scientists use heat and mismatched surfaces to stretch films that can potentially improve the efficient operation of devices.

Simple is Beautiful in Quantum Computing

Defect spins in diamond were controlled with a simpler, geometric method, leading to faster computing.

Replace or Wait? Study Says Swap All Incandescent Bulbs Now, but Hold on to CFLs, older LEDs

LED light bulbs are getting cheaper and more energy efficient every year. So, does it make sense to replace less-efficient bulbs with the latest light-emitting diodes now, or should you wait for future improvements and even lower costs?


  • Filters

  • × Clear Filters

Argonne to Install Comanche System to Explore ARM Technology for High-Performance Computing

Argonne National Laboratory is collaborating with Hewlett Packard Enterprise (HPE) to provide system software expertise and a development ecosystem for a future high-performance computing (HPC) system based on 64-bit ARM processors.

CANDLE Shines in 2017 HPCwire Readers' and Editors' Choice Awards

Argonne National Laboratory has been recognized in the annual <em>HPCwire</em> Readers' and Editors' Choice Awards, presented at the 2017 International Conference for High Performance Computing, Networking, Storage and Analysis (SC17), in Denver, Colorado.

SLAC's Helen Quinn Honored with 2018 Benjamin Franklin Medal in Physics

Helen Quinn, a professor emerita at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University, will receive the 2018 Benjamin Franklin Medal in Physics - one of eight prestigious Franklin Institute Awards that will be handed out in Philadelphia next April.

PPPL Honors Grierson and Greenough for Distinguished Research and Engineering Achievements

Article describes PPPL's presentation of 2017 Kaul Prize and Distinguished Engineering Fellow awards.

INCITE Grants of 5.95 Billion Hours Awarded to 55 Computational Research Projects

The U.S. Department of Energy's Office of Science announced 55 projects with high potential for accelerating discovery through its Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The projects will share 5.95 billion core-hours on three of America's most powerful supercomputers dedicated to capability-limited open science and support a broad range of large-scale research campaigns from infectious disease treatment to next-generation materials development.

Former SLAC Director Jonathan Dorfan Awarded Japan's Order of the Rising Sun

Former SLAC Director and Stanford University Professor Emeritus Jonathan Dorfan has been awarded Japan's Order of the Rising Sun, Gold and Silver Star for his contributions as founding president of the Okinawa Institute of Science and Technology Graduate University (OIST). It is the highest award Japan bestows on university presidents.

Jefferson Lab Staff Scientist Honored with APS Fellowship

Fulvia Pilat, a staff scientist at the Department of Energy's Thomas Jefferson National Accelerator Facility, has been named a fellow of the American Physical Society. The honor is bestowed by members of APS on their peers for exceptional contributions to their fields.

First Northwest Theoretical Chemistry Conference Is a Hit!

The first Northwest Theoretical Chemistry Conference was a success. The event offered ~50 early career theorists and students opportunities to present talks in a nurturing environment that developed and advanced collaborations.

Argonne Forms New Divisions to Focus on Computation and Data Science Strengths

Argonne has formed two new research divisions to focus its lab-wide foundational expertise on computational science and data science activities.

Hermann Grunder Recognized by IEEE Nuclear and Plasma Sciences Society

Dr. Hermann Grunder, Founding Director of Jefferson Lab, has been selected as one of two recipients of the 2018 IEEE NPSS Particle Accelerator Science and Technology (PAST) Award.


  • Filters

  • × Clear Filters

The Challenge of Estimating Alaska's Soil Carbon Stocks

A geospatial analysis determined the optimal distribution of sites needed to reliably estimate Alaska's vast soil carbon.

Unplugging the Cellulose Biofuel Bottleneck

Molecular-level understanding of cellulose structure reveals why it resists degradation and could lead to cost-effective biofuels.

How Fungal Enzymes Break Down Plant Cell Walls

Lignocellulose-degrading enzyme complexes could improve biofuel production.

Stretching to Perfection of 2-D Semiconductors

Scientists use heat and mismatched surfaces to stretch films that can potentially improve the efficient operation of devices.

Simple is Beautiful in Quantum Computing

Defect spins in diamond were controlled with a simpler, geometric method, leading to faster computing.

The Effect of Hurricanes on Puerto Rico's Dry Forests

More frequent storms turn forests from carbon source to sink.

A Chemical Thermometer for Tropical Forests

Monoterpene measures how certain forests respond to heat stress.

Where a Leaf Lands and Lies Influences Carbon Levels in Soil for Years to Come

Whether carbon comes from leaves or needles affects how fast it decomposes, but where it ends up determines how long it's available.

Twisting Molecule Wrings More Power from Solar Cells

Readily rotating molecules let electrons last, resulting in higher solar cell efficiency.

Rules Are Only Suggestions in Heavy Elements

The arrangement of electrons in an exotic human-made element shows that certain properties of heavy elements cannot be predicted using lighter ones.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215