Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-08-17 13:05:24
  • Article ID: 679719

Scientists Create 'Diamond Rain' That Forms in the Interior of Icy Giant Planets

SLAC's X-ray laser and Matter in Extreme Conditions instrument allow researchers to examine the exotic precipitation in real-time as it materializes in the laboratory.

  • Credit: Greg Stewart/SLAC National Accelerator Laboratory

    A cutaway shows the interior of Neptune (left). In an experiment conducted at the Linac Coherent Light Source, the team studied a plastic simulating compounds formed from methane—a molecule with just one carbon bound to four hydrogen atoms that causes the distinct blue cast of Neptune. Methane forms hydrocarbon (hydrogen and carbon) chains that respond to high pressure and temperature to form “diamond rain” in the interiors of icy giant planets like Neptune. The scientists were able to recreate similar conditions using high-powered optical lasers and watch the small diamonds form in real-time with X-rays.

  • Credit: SLAC National Accelerator Laboratory

    The Matter in Extreme Conditions instrument at SLAC gives scientists the tools to investigate the extremely hot, dense matter at the centers of stars and giant planets. These experiments could help researchers design new materials with enhanced properties and recreate the nuclear fusion process that powers the sun.

Menlo Park, Calif. — In an experiment designed to mimic the conditions deep inside the icy giant planets of our solar system, scientists were able to observe “diamond rain” for the first time as it formed in high-pressure conditions. Extremely high pressure squeezes hydrogen and carbon found in the interior of these planets to form solid diamonds that sink slowly down further into the interior.

The glittering precipitation has long been hypothesized to arise more than 5,000 miles below the surface of Uranus and Neptune, created from commonly found mixtures of just hydrogen and carbon. The interiors of these planets are similar—both contain solid cores surrounded by a dense slush of different ices. With the icy planets in our solar system, “ice” refers to hydrogen molecules connected to lighter elements, such as carbon, oxygen and/or nitrogen.

Researchers simulated the environment found inside these planets by creating shock waves in plastic with an intense optical laser at the Matter in Extreme Conditions (MEC) instrument at SLAC National Accelerator Laboratory’s X-ray free-electron laser, the Linac Coherent Light Source (LCLS). SLAC is one of 10 Department of Energy (DOE) Office of Science laboratories.

In the experiment, they were able to see that nearly every carbon atom of the original plastic was incorporated into small diamond structures up to a few nanometers wide. On Uranus and Neptune, the study authors predict that diamonds would become much larger, maybe millions of carats in weight. Researchers also think it’s possible that over thousands of years, the diamonds slowly sink through the planets’ ice layers and assemble into a thick layer around the core.

The research was published in Nature Astronomy on August 21.

“Previously, researchers could only assume that the diamonds had formed,” said Dominik Kraus, scientist at Helmholtz Zentrum Dresden-Rossendorf and lead author on the publication. “When I saw the results of this latest experiment, it was one of the best moments of my scientific career.”

Earlier experiments that attempted to recreate diamond rain in similar conditions were not able to capture measurements in real time, due to the fact that currently we can create these extreme conditions under which tiny diamonds form only for very brief time in the laboratory. The high-energy optical lasers at MEC combined with LCLS’s X-ray pulses—which last just femtoseconds, or quadrillionths of a second—allowed the scientists to directly measure the chemical reaction.

Other prior experiments also saw hints of carbon forming graphite or diamond at lower pressures than the ones created in this experiment, but with other materials introduced and altering the reactions.

The results presented in this experiment is the first unambiguous observation of high-pressure diamond formation from mixtures and agree with theoretical predictions about the conditions under which such precipitation can form and will provide scientists with better information to describe and classify other worlds.

Turning Plastic Into Diamond

In the experiment, plastic simulates compounds formed from methane—a molecule with just one carbon bound to four hydrogen atoms that causes the distinct blue cast of Neptune.

The team studied a plastic material, polystyrene, that is made from a mixture of hydrogen and carbon, key components of these planets’ overall chemical makeup.

In the intermediate layers of icy giant planets, methane forms hydrocarbon (hydrogen and carbon) chains that were long hypothesized to respond to high pressure and temperature in deeper layers and form the sparkling precipitation.

The researchers used high-powered optical laser to create pairs of shock waves in the plastic with the correct combination of temperature and pressure. The first shock is smaller and slower and overtaken by the stronger second shock. When the shock waves overlap, that’s the moment the pressure peaks and when most of the diamonds form, Kraus said.

During those moments, the team probed the reaction with pulses of X-rays from LCLS that last just 50 femtoseconds. This allowed them to see the small diamonds that form in fractions of a second with a technique called femtosecond X-ray diffraction. The X-ray snapshots provide information about the size of the diamonds and the details of the chemical reaction as it occurs.

“For this experiment, we had LCLS, the brightest X-ray source in the world,” said Siegfried Glenzer, professor of photon science at SLAC and a co-author of the paper. “You need these intense, fast pulses of X-rays to unambiguously see the structure of these diamonds, because they are only formed in the laboratory for such a very short time.”

Nanodiamonds at Work

When astronomers observe exoplanets outside our solar system, they are able to measure two primary traits—the mass, which is measured by the wobble of stars, and radius, observed from the shadow when the planet passes in front of a star. The relationship between the two is used to classify a planet and help determine whether it may be composed of heavier or lighter elements.

“With planets, the relationship between mass and radius can tell scientists quite a bit about the chemistry,” Kraus said. “And the chemistry that happens in the interior can provide additional information about some of the defining features of the planet. 

Information from studies like this one about how elements mix and clump together under pressure in the interior of a given planet can change the way scientists calculate the relationship between mass and radius, allowing scientists to better model and classify individual planets. The falling “diamond rain” also could be an additional source of energy, generating heat while sinking towards the core.

“We can’t go inside the planets and look at them, so these laboratory experiments complement satellite and telescope observations,” Kraus said.

The researchers also plan to apply the same methods to look at other processes that occur in the interiors of planets.

In addition to the insights they give into planetary science, nanodiamonds made on Earth could potentially be harvested for commercial purposes – uses that span medicine, scientific equipment and electronics. Currently, nanodiamonds are commercially produced from explosives; laser production may offer a cleaner and more easily controlled method.

Research that compresses matter, like this study, also helps scientists understand and improve fusion experiments where forms of hydrogen combine to form helium to generate vast amounts of energy. This is the process that fuels the sun and other stars but has yet to be realized in a controlled way for power plants on Earth. 

In some fusion experiments, a fuel of two different forms of hydrogen is surrounded by a plastic layer that reaches conditions similar to the interior of planets during a short-lived compression stage. The LCLS experiment on plastic now suggests that chemistry may play an important role in this stage.

“Simulations don’t really capture what we’re observing in this field,” Glenzer said. “Our study and others provide evidence that matter clumping in these types of high-pressure conditions is a force to be reckoned with.”

The research collaboration includes scientists from Helmholtz-Zentrum Dresden-Rossendorf in Germany, University of California-Berkeley, Lawrence Livermore National Laboratory, Lawrence Berkeley National Laboratory, GSI Helmholtz Centre for Heavy Ion Research in Germany, Osaka University in Japan, Technical University of Darmstadt in Germany, European XFEL, University of Michigan, University of Warwick in the United Kingdom and SLAC.

The research was supported by DOE’s Office of Science and the National Nuclear Security Administration.  LCLS is a DOE Office of Science User Facility.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

  • Filters

  • × Clear Filters

Living Sensor Can Potentially Prevent Environmental Disasters From Fuel Spills

The Colonial Pipeline, which carries fuel from Texas to New York, ruptured last fall, dumping a quarter-million gallons of gas in rural Alabama. By the time the leak was detected during routine inspection, vapors from released gasoline were so strong they prevented pipeline repair for days. Now, scientists are developing technology that would alert pipeline managers about leaks as soon as failure begins, avoiding the environmental disasters and fuel distribution disruptions resulting from pipeline leaks.

Graphene Oxide Nanosheets Could Help Bring Lithium-Metal Batteries to Market

Lithium-metal batteries -- which can hold up to 10 times more charge than the lithium-ion batteries that currently power our phones, laptops and cars -- haven't been commercialized because of a fatal flaw: as these batteries charge and discharge, lithium is deposited unevenly on the electrodes. This buildup cuts the lives of these batteries too short to make them viable, and more importantly, can cause the batteries to short-circuit and catch fire.

United States Department of Energy to Host Multi-Laboratory Cyber Defense Competition

In less than one month, over a hundred college students from across the United States will convene in one of the largest cyber defense competitions in the nation. The event, hosted by the U.S. Department of Energy, will take place on April 6-7, 2018. This event will be simultaneously hosted across three of the Department's national laboratories: Argonne, Oak Ridge and Pacific Northwest. The completion challenges students to respond to a scenario based on a real-world challenge of vital importance: protecting the Nation's energy critical infrastructure from the cyber threat.

Diamonds From the Deep: Study Suggests Water May Exist in Earth's Lower Mantle

A new study, which included experiments at Berkeley Lab, suggests that water may be more common than expected at extreme depths approaching 400 miles and possibly beyond - within Earth's lower mantle. The study explored microscopic pockets of a trapped form of crystallized water molecules in a sampling of diamonds.

Data Dive: How Microbes Handle Poor Nutrition in Tropical Soil

High-performance computing reveals the relationship between DNA and phosphorous uptake.

The Secret Lives of Cells

Supercomputer simulations predict how E. coli adapts to environmental stresses.

The Element of Surprise

In a new study from the U.S. Department of Energy's (DOE) Argonne National Laboratory and the University of Lille in France, chemists have explored protactinium's multiple resemblances to more completely understand the relationship between the transition metals and the complex chemistry of the early actinide elements.

Chemists use abundant, low-cost and non-toxic elements to synthesize semiconductors

Javier Vela of Iowa State University and the Ames Laboratory has worked with two of his graduate students to synthesize a new material for semiconductors. The chemists think the material will work well in solar cells, but without the toxicity, scarcity or costs of other semiconductors.

Turbocharging Fuel Cells with a Multifunctional Catalyst

Zero-emissions cars zipping into a sustainable energy future are just one dream powered by fuel cells. But cell technology has been a little sluggish and fuel prohibitively pricey. This new catalyst could offer a game changer. And there are more developments to come.

Researchers Develop Spectroscopic Thermometer for Nanomaterials

A scientific team led by the Department of Energy's Oak Ridge National Laboratory has found a new way to take the local temperature of a material from an area about a billionth of a meter wide, or approximately 100,000 times thinner than a human hair.

  • Filters

  • × Clear Filters

Jefferson Lab Announces New Accelerator Science Leader

The Department of Energy's Thomas Jefferson National Accelerator Facility has announced that Andrei Seryi will become its new associate director for accelerator operations, research and development in June.

First Plasma for New Machine to Study Puzzling Process That Occurs Throughout the Universe

Announcement describes completion of construction of FLARE, a powerful new machine to study magnetic reconnection.

Rensselaer Polytechnic Institute Professor Jian Sun Receives Power Electronics Achievement Award

Jian Sun, professor of electrical, computer, and systems engineering and director the New York State Center for Future Energy Systems at Rensselaer Polytechnic Institute, received the 2017 R. David Middlebrook Outstanding Achievement Award from the IEEE Power Electronics Society (PELS). He was recognized for "contributions to modeling and control of power electronic converters and systems."

FGC Plasma Solutions Wins Top NASA Innovation Award

Argonne Chain Reaction Innovator Felipe Gomez del Campo has received the 2018 NASA iTech award for X-Factor Innovation.

Sandia Researcher Jacqueline Chen Elected to National Academy of Engineering

LIVERMORE, Calif. -- Jacqueline Chen, a distinguished member of the technical staff at Sandia National Laboratories, has been elected to the National Academy of Engineering. Chen is among the 99 new members from around the globe in the 2018 class.Election to the National Academy of Engineering is the highest professional distinction for an engineer in the United States.

PNNL Helps Form International Energy Storage Organization

News Release DALIAN, China -- Energy storage allows power operators across the nation to balance electricity supply and demand instantaneously, affording ratepayers a more resilient power supply.Now the focus on energy storage is global. In January, energy storage experts at the Department of Energy's Pacific Northwest National Laboratory joined forces with their counterparts around the world to forge the International Coalition for Energy Storage and Innovation, or ICESI.

University Partnership to Help Nevada Scientists Commercialize Discovery

UNLV's Office of Technology Transfer and the Desert Research are partnering to help faculty and students leverage each other's talent and resources to transform inventions into new products and services.

DOE Seeks Industry Partners for HPC Research on Materials in Applied Energy Technologies

The Department of Energy (DOE) today announced a funding opportunity totaling $3 million to support projects between U.S. industry and DOE national laboratories related to improving materials in severe or complex environments through the new High Performance Computing for Materials in Applied Energy Technologies (HPC4Mtls) Program.

Secretary of Energy Rick Perry Announces $30 Million for Small Business Research and Development Grants

Today, U.S. Secretary of Energy Rick Perry announced that the Department of Energy (DOE) will award 179 grants totaling $30 million to 149 small businesses in 36 states.

Microgrid Coming to Northern California Airport

Designed by the Schatz Energy Research Center at Humboldt State University, the microgrid will generate green electricity, create jobs for local contractors and technicians, and provide an energy lifeline in the event of a natural disaster.

  • Filters

  • × Clear Filters

Unlocking On-Package Memory's Effects on High-Performance Computing's Scientific Kernels

Intuitive visual analytical model better explains complex architectural scenarios and offers general design principles.

Data Dive: How Microbes Handle Poor Nutrition in Tropical Soil

High-performance computing reveals the relationship between DNA and phosphorous uptake.

The Secret Lives of Cells

Supercomputer simulations predict how E. coli adapts to environmental stresses.

It's Not Part of the Problem, but Part of the Solution

Americium(III) is selectively and efficiently separated from europium(III) by an extractant in an ionic liquid.

Buckyball Marries Graphene

Electronic and structure richness arise from the merger of semiconducting molecules of carbon buckyballs and 2-D graphene.

Atomic Movies Explain Why Perovskite Solar Cells Are More Efficient

Tracking atoms is crucial to improving the efficiency of next-generation perovskite solar cells.

Catalysts: High Performance Lies on the Edge

Iron may be more valuable than platinum. Sometimes.

Discovery of a New Microbe that Produces Methane in Oxygenated Soils

Global models may be underestimating net wetland methane emissions.

Researchers Decipher the Structure of a Bacterial Microcompartment

The geometric complexities uncovered provide insights into how these mini-organs get assembled, potentially of interest for fuel production.

CUORE Constrains Neutrino Properties

The CUORE experiment set the tightest limits yet on the rare decay of tellurium-130, providing insights into the nature of neutrinos.


Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Showing results

0-4 Of 2215