logo
DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2017-07-26 08:55:21
    • Article ID: 678455

    On Track Towards a Zika Virus Vaccine

    Antibody's molecular structure reveals how it recognizes the virus

    • Credit: Image courtesy of Pamela J. Bjorkman, Caltech

      The crystal structure of an anti-Zika antibody bound to a Zika virus envelope protein antigen. The structure reveals that the Z006 antibody (blue and cyan) recognizes a region of the Zika virus (black) distinct from the recognition sites of previously structurally characterized anti-Zika antibodies.

    The Science

    Infection by the mosquito-borne Zika virus is usually asymptomatic or results in only mild symptoms. However, babies born to women infected during pregnancy are at risk of devastating neurodevelopmental abnormalities, including microcephaly. A team isolated and characterized antibodies from patients infected with the Zika virus with the goal of discovering new ways of fighting the virus. The team identified a class of antibodies that target a region of the antigenic Zika virus envelope protein known as the “lateral ridge.” Antibodies that attack this region of the virus are some of the most potent, indicating that the ridge is an ideal target for vaccine development.

    The Impact

    Currently, avoiding mosquito bites is the only prevention strategy against Zika infection, as there is no vaccine or treatment. An effective vaccine against Zika infection could prevent devastating birth defects from children born to infected mothers. While efforts to develop a vaccine often use all or most of the virus to stimulate the immune system, the research team believes that focusing the immune system toward the lateral ridge portion of the Zika virus’ envelope protein domain III (EDIII) would result in a more effective vaccine.

    Summary

    The research team from the Rockefeller University and Caltech, along with collaborators working in Pau da Lima, Brazil and Santa Maria Mixtequilla, Mexico, and led by Dr. Davide Robbiani, screened blood samples from more than 400 people from areas in Brazil and Mexico exposed to Zika virus for antibodies capable of binding to Zika virus EDIII. The virus uses EDIII to attach to human cells and initiate infection, and therefore, it is a prime target for treatment and vaccine development. After identifying six patients with high antibody response against Zika virus EDIII, the team found that five out of the six patients had nearly identical antibodies, suggesting that these molecules were particularly good at fighting the virus. Interestingly, the antibodies are capable of not only preventing Zika infection but also infection by another flavivirus, dengue virus (DENV1). In fact, the antibodies may have been initially generated in response to an earlier infection by DENV1. Using data collected from beamline 12-2 at the Department of Energy’s Stanford Synchrotron Radiation Lightsource, the team solved crystal structures of two of these antibodies — one in complex with the Zika EDIII antigenic protein domain (Z006­–ZIKV EDIII complex) and the other in complex with dengue envelope protein antigen (Z004–DENV1 EDIII) — to better understand how these antibodies work to prevent infection and how they recognize antigens from two different viruses. The two structures are themselves very similar, and when the complexes are superimposed, aligning the EDIII protein domains, the team observed that the two antibodies bind in roughly the same orientation, each recognizing the structurally similar lateral ridge on the viral protein EDIII domain. Despite the two antibodies having originated from different donors, they make interactions with the lateral ridge in a very similar way. This more detailed understanding of how this class of antibodies interacts with the Zika and dengue viral proteins could lead to a new way to fight the diseases, including a vaccine.

    Funding

    This work was supported by National Institutes of Health (NIH) pilot awards U19AI111825 (to D.F.R.) and UL1TR001866 (to D.F.R. and L.B.); grants R01AI037526, UM1AI100663, U19AI111825, and UL1TR001866 (to M.C.N.); grants R01AI121207, R01TW009504, R25TW009338, and U01AI088752 (to A.I.K.); grants R01AI124690 (to C.M.R.) and U19AI057229 (Cooperative Centers for Translational Research in Human Immunology Opportunity Fund Project to C.M.R. and M.R.M.); donors to the Zika Fund at Rockefeller University and anonymous donors (to C.M.R.), and the Molecular Observatory at Caltech supported by the Gordon and Betty Moore Foundation (P.J.B.). Operations at the Stanford Synchrotron Radiation Light Source (SSRL) are supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE, Office of Science, Office of Biological and Environmental Research, and by the NIH, National Institute of General Medical Sciences (P41GM103393). Support was also provided by the Robertson Therapeutic Development Fund (to D.F.R. and M.C.N.). P.C.O. is supported by the Pew Latin American Fellows Program in the Biomedical Sciences, D.S.B. by Studienstiftung des deutschen Volkes, L.F.K.U. by the Austrian Marshall Plan Foundation, and E.E.S.R. is partly supported by Red INMUNOCANEI-Conacyt. M.C.N. is a Howard Hughes Medical Institute Investigator.

    Publications

    D.F. Robbiani, L. Bozzacco, J.R. Keeffe, R. Khouri, P.C. Olsen, A. Gazumyan, D. Schaefer-Babajew, S. Avila-Rios, L. Nogueira, R. Patel, S.A. Azzopardi, L.F.K. Uhl, M. Saeed, E.E. Sevilla-Reyes, M. Agudelo, K.H. Yao, J. Golijanin, H.B. Gristick, Y.E. Lee, A. Hurley, M. Caskey, J. Pai, T. Oliveira, E.A. Wunder, Jr., G. Sacramento, N. Nery, Jr., C. Orge, F. Costa, M.G. Reis, N.M. Thomas, T. Eisenreich, D.M. Weinberger, A.R.P. d. Almeida, A.P. West, Jr., C.M. Rice, P.J. Bjorkman, G. Reyes-Teran, A.I. Ko, M.R. MacDonald and M.C. Nussenzweig, “Recurrent potent human neutralizing antibodies to Zika virus in Brazil and MexicoExternal link.” Cell 169, 597 (2017). [DOI: 10.1016/j.cell.2017.04.024]

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Argonne multidisciplinary team develops new probe for battery research: Strength in numbers

    Argonne multidisciplinary team develops new probe for battery research: Strength in numbers

    An Argonne team has developed a powerful technique for probing in three dimensions the nanostructure for cathode materials of next-generation batteries. Such batteries could one day revolutionize energy storage for both transportation and the electric grid.

    Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

    Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

    Scientists at PPPL have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Researchers at the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing.

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Surprise discovery shows that turbulence at the edge of the plasma may facilitate production of fusion energy.

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.


    • Filters

    • × Clear Filters
    Jefferson Lab Establishes New Fellowships in Nuclear Physics and Accelerator Science

    Jefferson Lab Establishes New Fellowships in Nuclear Physics and Accelerator Science

    The Department of Energy's Thomas Jefferson National Accelerator Facility is fostering innovation and growth in nuclear and accelerator physics by expanding its prestigious fellowship program for early career physicists. The lab is doubling the number of Nathan Isgur fellowships and is establishing a new fellowship in honor of Jefferson Lab's first director, Hermann A. Grunder.

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak Receives 2019 Distinguished Scientist Fellow Award

    Barbara Jacak, director of Lawrence Berkeley National Laboratory's Nuclear Science Division since 2015, has been named a 2019 Distinguished Scientist Fellow by the U.S. Department of Energy's Office of Science.

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Two Brookhaven Lab Scientists Named DOE Office of Science Distinguished Fellows

    Scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have garnered two out of five "Distinguished Scientists Fellow" awards announced today by the DOE's Office of Science. Theoretical physicist Sally Dawson, a world-leader in calculations aimed at describing the properties of the Higgs boson, and Jose Rodriguez, a renowned chemist exploring and developing catalysts for energy-related reactions, will each receive $1 million in funding over three years to pursue new research objectives within their respective fields.

    Department of Energy Announces Private-Public Awards to Advance Fusion Energy Technology

    The U.S. Department of Energy (DOE) announced funding for 12 projects with private industry to enable collaboration with DOE national laboratories on overcoming challenges in fusion energy development. The awards are the first provided through the Innovation Network for Fusion Energy program (INFUSE).

    Denisov Leads High Energy Physics at Brookhaven

    Denisov Leads High Energy Physics at Brookhaven

    Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named Deputy Associate Lab Director for High Energy Physics at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory.

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Chemistry Postdoc Receives Battery500 Young Investigator Award

    Zulipiya Shadike, a postdoctoral fellow in the Chemistry Division at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, received a Young Investigator Award from the Battery500 Consortium, a DOE-sponsored consortium led by Pacific Northwest National Laboratory (PNNL) that aims to improve electric vehicle batteries.

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    Two Brookhaven Lab Scientists Named Fellows of the American Physical Society

    The American Physical Society (APS) has elected two scientists from Brookhaven National Laboratory as 2019 APS fellows.

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Versatile physics leader Stefan Gerhardt elected an APS fellow

    Profile of physicist Stefan Gerhardt who has been elected a 2019 fellow of the American Physical Society.

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    PNNL, Sandia, and Georgia Tech Join Forces in AI Effort

    Scientists from DOE's Pacific Northwest National Laboratory, DOE's Sandia National Laboratories, and the Georgia Institute of Technology will collaborate on solutions to some of the most challenging problems in AI today, thanks to $5.5 million in funding from DOE.

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne Receives More Than $1 Million for Quantum Information Science

    Argonne scientists receive $1.19 million from DOE for quantum research.


    • Filters

    • × Clear Filters
    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.

    Even Hard Materials Have Soft Spots

    Even Hard Materials Have Soft Spots

    The Achilles Heel of "metallic glasses" is that while they are strong materials--even stronger than conventional steels--they are also very brittle. The initial failures tend to be localized and catastrophic. This is due to their random amorphous (versus ordered crystalline) atomic structure. Computer simulations revealed that the structure is not completely random, however, and that there are some regions in the structure that are relatively weak. Defects nucleate more easily in these regions, which can lead to failure. This understanding of the mechanical properties has led to a strategy for making the material stronger and less brittle.

    2-D Atoms Do the Twist

    2-D Atoms Do the Twist

    In the study, scientists demonstrated, for the first time, an intrinsically rotating form of motion for the atoms in a crystal. The observations were on collective excitations of a single molecular layer of tungsten diselenide. Whether the rotation is clockwise or counter-clockwise depends on the wave's propagation direction.

    Location, Location, Location... How charge placement can control a self-assembled structure

    Location, Location, Location... How charge placement can control a self-assembled structure

    For years, scientists have formed polymers using the interaction of charges on molecular chains to determine the shape, geometry, and other properties. Now, a team achieved precise and predictable control of molecular chains by positioning charges. Their method leads to particles with reproducible sizes.

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time

    Alloys (metals combining two or more metallic elements) are typically stronger and less susceptible to cracking than pure metals. Yet when alloys are subjected to stress and a harsh chemical environment, the alloy can fail. The reason? Cracks caused by corrosion.

    Simultaneous Clean and Repair

    Simultaneous Clean and Repair

    Scientists have developed a novel and efficient approach to surface cleaning, materials transport, and repair.


    Spotlight





    Showing results

    0-4 Of 2215