DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2015-01-20 05:00:00
    • Article ID: 628379

    Self-Assembled Nanotextures Create Antireflective Surface on Silicon Solar Cells

    Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity

    • Credit: Brookhaven National Laboratory

      Chuck Black of Brookhaven National Laboratory's Center for Functional Nanomaterials displays a nanotextured square of silicon on top of an ordinary silicon wafer. The nanotextured surface is completely antireflective and could boost the production of solar energy from silicon solar cells.

    • Credit: Brookhaven National Laboratory

      A closeup shows how the nanotextured square of silicon completely blocks reflection compared with the surrounding silicon wafer.

    • Credit: Brookhaven National Laboratory

      Details of the nanotextured antireflective surface as revealed by a scanning electron microscope at the Center for Functional Nanomaterials. The tiny posts, each smaller than the wavelengths of light, are reminiscent of the structure of moths' eyes, an example of an antireflective surface found in nature.

    Self-Assembled Nanotextures Create Antireflective Surface on Silicon Solar Cells

    Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity

    January 21, 2015

    UPTON, NY-Reducing the amount of sunlight that bounces off the surface of solar cells helps maximize the conversion of the sun's rays to electricity, so manufacturers use coatings to cut down on reflections. Now scientists at the U.S. Department of Energy's Brookhaven National Laboratory show that etching a nanoscale texture onto the silicon material itself creates an antireflective surface that works as well as state-of-the-art thin-film multilayer coatings.

    Their method, described in the journal Nature Communications and submitted for patent protection, has potential for streamlining silicon solar cell production and reducing manufacturing costs. The approach may find additional applications in reducing glare from windows, providing radar camouflage for military equipment, and increasing the brightness of light-emitting diodes.

    "For antireflection applications, the idea is to prevent light or radio waves from bouncing at interfaces between materials," said physicist Charles Black, who led the research at Brookhaven Lab's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility.

    Preventing reflections requires controlling an abrupt change in "refractive index," a property that affects how waves such as light propagate through a material. This occurs at the interface where two materials with very different refractive indices meet, for example at the interface between air and silicon. Adding a coating with an intermediate refractive index at the interface eases the transition between materials and reduces the reflection, Black explained.

    "The issue with using such coatings for solar cells," he said, "is that we'd prefer to fully capture every color of the light spectrum within the device, and we'd like to capture the light irrespective of the direction it comes from. But each color of light couples best with a different antireflection coating, and each coating is optimized for light coming from a particular direction. So you deal with these issues by using multiple antireflection layers. We were interested in looking for a better way."

    For inspiration, the scientists turned to a well-known example of an antireflective surface in nature, the eyes of common moths. The surfaces of their compound eyes have textured patterns made of many tiny "posts," each smaller than the wavelengths of light. This textured surface improves moths' nighttime vision, and also prevents the "deer in the headlights" reflecting glow that might allow predators to detect them.

    "We set out to recreate moth eye patterns in silicon at even smaller sizes using methods of nanotechnology," said Atikur Rahman, a postdoctoral fellow working with Black at the CFN and first author of the study.

    The scientists started by coating the top surface of a silicon solar cell with a polymer material called a "block copolymer," which can be made to self-organize into an ordered surface pattern with dimensions measuring only tens of nanometers. The self-assembled pattern served as a template for forming posts in the solar cell like those in the moth eye using a plasma of reactive gases-a technique commonly used in the manufacture of semiconductor electronic circuits.

    The resulting surface nanotexture served to gradually change the refractive index to drastically cut down on reflection of many wavelengths of light simultaneously, regardless of the direction of light impinging on the solar cell.

    "Adding these nanotextures turned the normally shiny silicon surface absolutely black," Rahman said.

    Solar cells textured in this way outperform those coated with a single antireflective film by about 20 percent, and bring light into the device as well as the best multi-layer-coatings used in the industry.

    "We are working to understand whether there are economic advantages to assembling silicon solar cells using our method, compared to other, established processes in the industry," Black said.

    Hidden layer explains better-than-expected performance

    One intriguing aspect of the study was that the scientists achieved the antireflective performance by creating nanoposts only half as tall as the required height predicted by a mathematical model describing the effect. So they called upon the expertise of colleagues at the CFN and other Brookhaven scientists to help sort out the mystery.

    "This is a powerful advantage of doing research at the CFN-both for us and for academic and industrial researchers coming to use our facilities," Black said. "We have all these experts around who can help you solve your problems."

    Using a combination of computational modeling, electron microscopy, and surface science, the team deduced that a thin layer of silicon oxide similar to what typically forms when silicon is exposed to air seemed to be having an outsized effect.

    "On a flat surface, this layer is so thin that its effect is minimal," explained Matt Eisaman of Brookhaven's Sustainable Energy Technologies Department and a professor at Stony Brook University. "But on the nanopatterned surface, with the thin oxide layer surrounding all sides of the nanotexture, the oxide can have a larger effect because it makes up a significant portion of the nanotextured material."

    Said Black, "This 'hidden' layer was the key to the extra boost in performance."

    The scientists are now interested in developing their self-assembly based method of nanotexture patterning for other materials, including glass and plastic, for antiglare windows and coatings for solar panels.

    This research was supported by the DOE Office of Science.

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

    Media Contacts: Karen McNulty Walsh, (631) 344-8350, kmcnulty@bnl.gov, or Peter Genzer, (631) 344-3174, genzer@bnl.gov

    To view an electronic version of this news release with related graphics, go to:

    http://www.bnl.gov/newsroom/news.php?a=11685.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    AI for Plant Breeding in an Ever-Changing Climate

    AI for Plant Breeding in an Ever-Changing Climate

    In this Q&A, Oak Ridge National Laboratory's Dan Jacobson talks about his team's work on a genomic selection algorithm, his vision for the future of environmental genomics, and the space where simulation meets AI.

    A New Parallel Strategy for Tackling Turbulence on Summit

    A New Parallel Strategy for Tackling Turbulence on Summit

    A team at Georgia Tech created a new turbulence algorithm optimized for the Summit supercomputer. It reached a performance of less than 15 seconds of wall-clock time per time step for more than 6 trillion grid points--a new world record surpassing the prior state of the art in the field for the size of the problem.

    Modeling Every Building in America Starts with Chattanooga

    Modeling Every Building in America Starts with Chattanooga

    An ORNL team used the Titan supercomputer to model every building serviced by the Electric Power Board of Chattanooga--all 178,368 of them--and discovered that EPB could potentially save $11-$35 million per year by adjusting electricity usage during peak critical times.

    Climate Change Expected to Shift Location of East Asian Monsoons

    Climate Change Expected to Shift Location of East Asian Monsoons

    More than a billion people in Asia depend on seasonal monsoons for their water needs. The Asian monsoon is closely linked to a planetary-scale tropical air flow which, according to a new study by Lawrence Berkeley National Laboratory, will most likely shift geographically as the climate continues to warm, resulting in less rainfall in certain regions.

    Nuclear warheads? This robot can find them

    Nuclear warheads? This robot can find them

    PPPL and Princeton University are developing a unique neutron-detector robot for arms control and nuclear security purposes. The robot recently passed a key neutron-detection test.

    Deep neural networks speed up weather and climate models

    Deep neural networks speed up weather and climate models

    A team of environmental and computation scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory are collaborating to use deep neural networks, a type of machine learning, to replace the parameterizations of certain physical schemes in the Weather Research and Forecasting Model, an extremely comprehensive model that simulates the evolution of many aspects of the physical world around us.

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    New AI Model Tries to Synthesize Patient Data Like Doctors Do

    A new approach developed by PNNL scientists improves the accuracy of patient diagnosis up to 20 percent when compared to other embedding approaches.

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Scientists Explore Egyptian Mummy Bones With X-Rays and Infrared Light to Gain New Insight on Ancient Life

    Experiments at Berkeley Lab are casting a new light on Egyptian soil and ancient mummified bone samples that could provide a richer understanding of daily life and environmental conditions thousands of years ago. In a two-monthslong research effort that concluded in late August, two researchers from Cairo University in Egypt brought 32 bone samples and two soil samples to study using X-ray and infrared light-based techniques at the Lab's Advanced Light Source.

    Etalumis 'Reverses' Simulations to Reveal New Science

    Etalumis 'Reverses' Simulations to Reveal New Science

    A multinational collaboration using computing resources at the National Energy Research Scientific Computing Center has developed the first probabilistic programming framework capable of controlling existing simulators and running at large-scale on HPC platforms.

    Deep Learning Expands Study of Nuclear Waste Remediation

    Deep Learning Expands Study of Nuclear Waste Remediation

    A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation


    • Filters

    • × Clear Filters
    ORNL to host 13 teams for DOE CyberForce Competition

    ORNL to host 13 teams for DOE CyberForce Competition

    Oak Ridge National Laboratory will give college students the chance to practice cybersecurity skills in a real-world setting as a host of the Department of Energy's fifth collegiate CyberForce Competition on Nov. 16.

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart selected to Crain's Chicago Business "40 Under 40"

    Argonne nuclear engineer J'Tia Hart has been named to Crain's Chicago Business's "40 Under 40" list, which recognizes young leaders in a variety of fields.

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Lab-Wide Stormwater Capture, Transportation Savings and Clean-Up Efforts Win Federal Recognition

    Argonne National Laboratory has won a regional Federal Green Challenge award for conserving resources and saving taxpayers' money.

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    PPPL wins $70,000 in project funding from DOE for entrepreneurship

    The Princeton Plasma Physics Laboratory receives funding from the U.S. Department of Energy for two projects to encourage entrepreneurship and mentor and encourage potential entrepreneurs.

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven-Commonwealth Fusion Energy Project Wins DOE Funding

    Brookhaven's Superconducting Magnet Division will partner with industry to develop and characterize superconducting power cables.

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    U.S. Department of Energy to Hold Fifth CyberForce Competition(tm)

    Going on its fourth year, DOE's CyberForce Competition(tm) on Nov. 15-16 will give teams of cybersecurity students and professionals the opportunity to compete and refine their skills in real-time at 10 national laboratories across the U.S.

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen awarded 2019 Panofsky Fellowship at SLAC

    Daniel Gruen's work on how massive objects bend light from distant galaxies is aimed at unraveling some of the greatest mysteries of modern physics: What is dark matter? What is dark energy, and how is it accelerating the expansion of the universe?

    DOE Announces FY 2020 Small Business Innovation Research Funding Opportunity

    The Department of Energy (DOE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs issued its FY 2020 Phase II Release 1 Funding Opportunity Announcement (FOA) with approximately $97 million in available funding.

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    Research effort by Argonne National Laboratory and the University of Chicago results in R&D 100 Award

    A joint effort by the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago has led to a prestigious R&D 100 Award and is expected to bring an innovation closer to market so it ultimately can be used in many industrial applications.

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    Department of Energy Awards Fermilab Funding for Next-Generation Dark Matter Research

    The U.S. Department of Energy announced that it has awarded scientists at its Fermi National Accelerator Laboratory funding to boost research on dark matter, the mysterious substance that makes up an astounding 85% of the matter in the universe.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight





    Showing results

    0-4 Of 2215