• newswise-fullscreen Saturn's Rings Shine in New Hubble Portrait

    Credit: NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

    Saturn is so beautiful that astronomers cannot resist using the Hubble Space Telescope to take yearly snapshots of the ringed world when it is near its closest distance to Earth. These images, however, are more than just beauty shots. They reveal a planet with a turbulent, dynamic atmosphere. This year's Hubble offering, for example, shows that a large storm visible in the 2018 Hubble image in the north polar region has vanished. Smaller storms pop into view like popcorn kernels popping in a microwave oven before disappearing just as quickly. Even the planet's banded structure reveals subtle changes in color. But the latest image shows plenty that hasn't changed. The mysterious six-sided pattern, called the "hexagon," still exists on the north pole. Caused by a high-speed jet stream, the hexagon was first discovered in 1981 by NASA's Voyager 1 spacecraft. Saturn's signature rings are still as stunning as ever. The image reveals that the ring system is tilted toward Earth, giving viewers a magnificent look at the bright, icy structure. Hubble resolves numerous ringlets and the fainter inner rings. This image, taken by Hubble on June 20, 2019, reveals an unprecedented clarity only seen previously in snapshots taken by NASA spacecraft visiting the distant planet. Astronomers will continue their yearly monitoring of the planet to track shifting weather patterns and identify other changes. The second in the yearly series, this image is part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system's gas giant planets.

FOR RELEASE: 10:00 a.m. (EDT) September 12, 2019

PHOTO NO.: STScI-PRC19-43a

SATURN'S RINGS SHINE IN NEW HUBBLE PORTRAIT

Newswise — Anyone who has ever peered at Saturn through a small telescope is immediately enticed by its elegant rings, which make the far-flung planet one of the most exotic-looking, opulent worlds in the solar system.

The latest view of Saturn from NASA's Hubble Space Telescope captures exquisite details of the ring system—which looks like a phonograph record with grooves that represent detailed structure within the rings—and atmospheric details that once could only be captured by spacecraft visiting the distant world.

One such intriguing feature is the long-lasting hexagon-shaped structure circling the planet's north pole. It is a mysterious six-sided pattern caused by a high-speed jet stream. NASA's Voyager 1 spacecraft first discovered the "hexagon" during its flyby in 1981. The hexagon is so large that four Earths could fit inside its boundaries. (There is no similar structure at Saturn's south pole.)

Other features, however, are not as long lasting. A large storm in the north polar region spotted by Hubble last year has disappeared. Smaller, convective storms—called super "thunderheads"—such as the one just above the center of the planet's image, also come and go.

Saturn's appearance changes with its seasons, which occur because Saturn's equator is tilted 27 degrees with respect to the plane of its orbit around the Sun. The Earth, similarly, has seasons because our planet is tilted by about 23.5 degrees, but seasons on Saturn last more than seven years. This new Saturn image was taken during summer in the planet's northern hemisphere.

The amber colors of the planet in this image come from summer smog-like hazes, produced in photochemical reactions driven by solar ultraviolet radiation. Below the haze lie clouds of ammonia ice crystals, as well as deeper, unseen lower-level clouds of ammonium hydrosulfide and water. Saturn's banded structure is caused by alternating winds that result in clouds at different altitudes at each latitude.

Saturn's trademark ring system is now tilted toward Earth, giving viewers a magnificent look at its bright, icy structure. The high resolution of Hubble's Wide Field Camera 3 allows us to see numerous ringlets and the fainter inner rings.

The planet teased and tantalized Galileo Galilei in 1610, who was astonished when he first saw its rings through the newly invented telescope. However, Galileo mistook them for weird appendages stuck to the planet, because his handheld telescope wasn’t very powerful. Dutch astronomer Christiaan Huygens first identified the rings as a separate phenomenon in 1655, but still he thought they were a continuous disk encircling the planet. Today, we know the rings are mostly made of pieces of ice, with sizes ranging from tiny grains to giant boulders. And they are constantly moving around the planet in an intricate cosmic dance.

The age of Saturn's ring system continues to be debated. And, even more perplexing, no one knows what cosmic catastrophe formed the rings. Additional clues came in as NASA's Cassini spacecraft plunged into Saturn's atmosphere on Sept. 15, 2017. NASA ended the mission in this way to prevent the spacecraft from accidentally crashing into one of Saturn's moons, but Cassini's dramatic finish also provided valuable scientific insights. During its final orbits, Cassini measured the mass of the ring system as merely 1/1000th the mass of Earth's Moon. Some astronomers have interpreted this low mass to mean that the rings may only be 100 million years old, a fraction of Saturn's age. However, there is still no consensus among planetary astronomers today.

Hubble's Wide Field Camera 3 observed Saturn on June 20, 2019, as the planet was near its closest approach to Earth, at about 845 million miles away.

This image is the second in a yearly series of snapshots taken as part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system's gas giant planets. In Saturn's case, astronomers will be able to track shifting weather patterns and other changes to identify trends.

Credit: NASA, ESA, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL Team

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

For image files and more information about Saturn and Hubble, visit:

https://hubblesite.org/contents/news-releases/2019/news-2019-43

http://www.nasa.gov/hubble

http://spacetelescope.org/news/heic1917

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

Amy Simon
Goddard Space Flight Center, Greenbelt, Maryland
amy.simon@nasa.gov

Mike Wong
University of California, Berkeley, California
mikewong@astro.berkeley.edu

 


Comment/Share

Chat now!
1.17787